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SECTION I

PROGRAM SUMMARY

The objective of the program is to develop the design criteria and

analytical methods necessary to ensure the damage tolerance of aircraft

attachment lugs. As planned, the program proceeds logically from an exten-

sive cracking data survey and nondestructive inspection (NDI) assessment,

through met1,od development and evaluation, to the preparation of damage

tolerance dez.ign criteria for aircraft atcachment lugs.

The program consists of three phases involving seven tasks. Phase I

consists of Tasks I, 11 and III; Phase II consists of Tasks IV, V and VI;

and Phase III consists of Task VII. A roadmap shown in Figure 1-I summar-

izes the major activities by task, decision points and their interrelation-

ships.

Task I involves a survey of structural. cracking data such as the ini-

tial flaw size, shape and location which occur in aircraft attachment lugs.

Sources for these data include open literature, available Lockheed data,

and visits to the five Air Force Air Logistics Centers (ALCs). The types

of aircraft structure used to obtain these data include service aircraft,

full-scale test articles, component test articles, and coupon specimens.

Task II assesses the current NDI capability to find these flaws or

cracks. This assessment is to be based upon information obtained ftom the

open literature, available Lockheed NDI data and experience, and Air Force

ALC data. The NDI techniques capable of tinding flaws in attachment lugs

and the flaw sizes these techniques are capable of finding are identified.

Where possible, the probability of detecting a flaw of a particular size

for the NDI technique involved is specified as well as the contidence level

assigned to that probability. The results obtained from Tasks I and II will

be used in the formulation of the initial flaw assumptions to be developed

in Task VII as part of tht damage tolerant design criteria for attachunent

lugs.

Task ItI involves three differen• levtls of complexitv 4nd dogrees

of sophist iýation for determining stress inct ilitv factors for single

corner cracks and sinrlt through-the-chickness cracks In aircraft

attachment lups. vid the devclopment of crack growth analysis capable of

4 .
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predicting the growth behavior of these cracks and residual strength of

these lugs. These stress intensity factors and crack growth analyses are

used in Task IV to predict the residual strength and the crack growth behav-

4 ior for a number of different geometries and test conditions defined in the

experimental program. These predictions are made prior to testing. Two

groups of attachment lug geometries are tested arid experimental test data

are generated in Task V. The analytical methods developed in Task III are

evaluated by correlating the analytical predictions made in Task IV with

the Group I experimental test data (based upon accuracy and cost) for use in

prediction of Group II tests. Further evaluation of the selected method is

made by correlating the analytical predictions for the Group II tests

(Task IV) with the experimental test results (Task V). These correlations

indicate what improvements are necessary for the selected analytical method.

The results are presented in parametric format useful to designers and

analysts. Damage tolerant design criteria for aircraft attachment lugs are

developed in Task VII. These criteria are similar in nature to those of

Military Specification MIL-A-83444, and require crack growth analyses by the

types of methods developed and verified in Tasks III through VI. The cri-

tetia include initial flaw assumptions (e.g., initial flaw type, shape,

size, etc.) based upon the cracking data survey of Task I, NDI assessment

of Task IT, and crack initiation tests of Task V.

As Figure 1-1 shows, the following sequence of final report volumes is

generated under this project:

Volume I. Cracking Data Survey and NDI Assessment for Attachment
Lugs

Volume II. Crack Growth Analysis Methods for Attachment Lugs

Volume III. Experimental Evaluation of Crack Growth Analysis Methods
for Attachment Lugs

Volume IV. Tnbulated Test Data for Attachment Lugs

Volume V. Exe'ýutive Summary and Damage Tolerance Criteria Recommen-
cations for Attachment Lugs

Volume VI. User's Manual for "LUGRO'" Computer Program to Predict
4 Crack Growth in Attachment Lugs

Thib is Volume II on Crack Growth Analysis Methods for Attachment Lugs,

which is the result of Task IHT efforts. It contains the developed analyt-

ical methodologies for determining the stress intensity factors for single

corner cracks and single through-the-thickness cracks in aircraft attachment

lugs, and for predicting the growth behavior of these cracks.

4 3



SECTION II

INTRODUCTION

In aircraft structures, lug-type joints are frequently used to connect

maj-r structural components or in linkage structure. The lug joint is norm-

ally connected by a single bolt or pin, creating a simple joint that is easy

to assemble and disassemble. Since clamping of the joint is not normally

allowed, the lug can act as a pivot. But the elastic gross section stress

concentration for normal lugs is very high, resulting in a relatively short

crack initiation and crack growth life. To improve the crack initiation

life, the stress concentration factor can be effectively reduced by cold

working the hole or by installing an interference-fit bushing prior to pin

fitting. To minimize the wear in either the lug or the pin, most aircraft

lugs have an oil fitting and/or lubrication provisions.

During the past decade, the influence of fracture mechanics on the

design, manufacture, and maintenance of aircraft has steadily increased.

Also, nondestructive inspection techniques have been improved significantly.

However, some cracks still cannot be detected during routine maintenance

inspection. Under service loading, such cracks will grow and fracture can

occur if the crack length reaches a critical dimension before it can be

detected and the part repaired or replaced. To assure aircraft safety, the

U. S. Air Force has impos-d damage-tolerance requirements (MIL-A-83444)[l]

Swhich include the predictiox. of fatigue crack growth life and residual

strength of the structure by assuming that small initial flaws exist at

critical locations of new structure due to various material and manufactur-

ing and process operations. Assumptions regarding the initial size, shape,

4 location, multiplicity, etc. for these flaws are specified in MIL-A-83444.

However, these assumptions were established primarily for skin-stringer

structure and may not be applicable for attachment lugs.

"Attachment lugs are some of the most fracture critical components in

aircraft structure, and the consequences of a structural lug failure can be

very severe. Therefore, it is necessary to develop damage tolerance design

requirements, similar to MIL-A-83444, for attachment lugs to ensure the

safety of aircraft. The development of these damage tolerance requirements

will be based upon actual cracking data for attachment lugs and current

5- , - . . - - --. ." .~. ' . ..-



nondestructive inspection capability. Once the damage tolerance design

requirements for aircraft attachment lugs are established, the analytical

methods necessary to satisfy the crack growth and residual strength require-

* ments are needed. In particular, stress intensity factors for cracks in

attachment lugs are needed. Such stress intensity factors will depend upon

, the complexities of structural configuration, crack geometry, applied loads,

and the fit between the pin and the lug.

There are a number of different methods for determining the stress

intensity factors, K, for cracks in aircraft attachment lugs. Schijve and

.Hoeymakers [2]and Wanhill [31 derived empirical K-solutions from the growth

rate data for through cracks under constant amplitude loading using a back-

"tracking method such as that proposed by James and Anderson[4]. Analytic-

ally, Liu and Kan [5]andKirkby and Rooke([6] used the simple compounded solu-

* tion method which involves superimposing known solutions, such as in Refer-

* ence[7]to estimate the stress intensity factors. Aberson and Anderson [8]

"used a special crack-tip singularity element to compute the stress intensity

factors for a crack in a nonsyimetrical aft lug of an engine pylon. Pian

et al [9] used the hybrid finite element method to compute the K-values for

*, cracks oriented in various angles from the axial direction of straight lugs.

Impellizzeri and Rich [l0]modified the exact weight function derived by

"Bueckner [II], for an edge crack in a semi-infinite plate, to include a series

- -of geometry correction factors. Then they computed the K-values using the

*] weight function method. Except for Reference [8],all of these works made the

" assumption that the assumed or computed pin-bearing pressure distribution for

an uncracked case remains unchanged even after the crack has initiated and

propagated. Based on the parametric study conducted in Reference[9],it was

S•.found that, for any given crack length, the difference in the stress inten-

".*. sity factor computed using the uniform and cosine pin-bearing pressure dis-

tributions was as much as 30 percent. Therefore, it is salient that the

correct representation of the pin-bearing pressure distribution during the

* crack growth process is essential to the calculation of accurate stress

intensity factors. An analysis procedure using a finite element method with

inclusion of a crack-tip singularity element for analyzing cracks in both

straight and tapered lugs having a neat fit between the pin and the hole(121

* has shown that it can accurately account for the change of pin-bearing

pressure distribution with the change in track length, and provide stress

intensity factors which are in excellent agreement with the available data.

*6



This approach was extended for the development of analytical methodclogy

for analyzing cracks in attachment lugs with and without the presence of

residual stress resulting from the installation of the interference-fit

bushing [13]. The analytical procedure developed for computing the strefs

intensity factors for cracks in attachment lugs having residual stressi's

around the hole prior to the application of pin-bearing loads consistj of

two major steps. First, the effective unflawed stress distribution ýra the

prospective crack surface was obtained by superimposing the residua'. hoop

stresses due to the installation of an interference-fit bushing on ?-he

applied tangential stresses obtained due to the application of a rTin loading.

Sccond, a through crack was introduced in this stress field by rrraoving the

tractions on the crack faces and computing the corresponding st,#:ss intensity

factor using the weight function approach.

This report describes the analytical methods and procedu-es for obtain-

ing the stress intensity factors and for predicting the fatigue crack growth

life for cracks at attachment lugs with and without the presence of residual

stresses. Two types of attachment lugs are considered in the analysis. They

are: (1) straight-shank male attachment lugs and (2) tapered male attachment

lugs as shown in Figure 2-1. Three ditterent outer-to-inner radius ratios,

KR ./R = 1.50, 2.25 and 3.0, are considered in the analysis. The straight

attachment lugs are subjected to axial pin loading only, while the tapered

attachment lugs are subjected to axial, ott-axis and transverse pin loadings.

Types ot cracks considered include single through-the-thickness crack and

single corner crack as depicted in Figitre 2-2.

For through-the-thickness cracks, the methods developed and described

in this report include: (1) the compounding solution method which involves

the superposition ot known solutions for idealized cracked geometries;

(2) the two-dimensional cracked finite element method which is capable ot

characterizing the crack-tip stress singularity internally; and (3) the

weight function (also knowtn as Creen's function) method which computes the

stress intettsity factors from the knowledge of the utntlawed stress distribu-

tion and the superposition technique. For corner cracks, the methods devel-

oped and described includc: (1) the one parameter compounding method which

assumes a const4tn•t crack shape and estimates the stress intensity tactor at

only one location on the crack trout (at lug surtace); (2) a two-dimensiontal

approach which estLm.Ates the stress tAtensity factors aloult the crack frotit

7
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of a corner crack Ly modifying the Green's function for through-the-thickness

crack solutions with appropriate hole curvature, flaw shape, front free

surface and back surface coirection factors; (3) the rigorous three-

dimensional cracked finite element method, which was developed using a

hybrid displacement finite element procedure.

After the stress intensity factor is determined as a function of crack

length for a particular lug and loading condition, its range (AK) can be

computed for the Nth cycle in a given load spectrum. Then a numerical inte-

gration of da/dN versus AK relation can be carried out to predict the crack

growth characteristics. An automated computer program was developed utiliz-

ing the state-of-the-art fracture mechanics methodologies for the prediction

of fatigue crack growth history under fatigue loading. The program is cap-

able of predicting the crack growth behavior of single corner cracks and

single through-the-thickness cracks in attachment lugs using block-by-block

integration technique. In the case of corner crack problems, a transitional

crack growth criterion from part-through crack to through-the-thickness

crack was also developed and incorporated. Several load-interaction models

were also included in the crack growth analysis program for spectrum load-

g ings.

The prediction methods presented in this volume of the report are to be

evaluated against fatigue crack growth test results. The test program con-

sists of two parts. Group I tests consist of straight-shank male attachment

lugs. Both constant amplitude and block spectrum loadings are considered in

this group. Variational tests, such as different thickness and with residual

stresses due to interference-fit bushings, are also included in Group I test-

ing. Group It tests, performed later, encompass several additional lug

Scaconfigurations (tapered, dogbone, clevis and a simulated wing-pylon attach lug)

and include both axial and off-axis loadln-s.

The stress intensity factor formulations prepared for Group I straight-

shank male attachment lugs are described in Section 111. A draft of Section

III was completed prior to Groupl testing. After Groaup testing, these

tormulations art evaluated. Based on this evaluation, a stress intensity

factor estimation methodology is selected for Group 11 testing. Section IV

describes such a selected methodology for tapered attachment lugs. The

crack growth prediction method which employs these stress intensity factor

solutions is presented in Section V.

10



SECTION III

STRESS INTENSITY FACTORS FOR STRAIGHT ATTACHMENT LUGS

In this section, the analytical methodologies required for the develop-

ment of stress intensity factors for cracks in simple straight-shank male

attachment lugs are described. The stress intensity factor solutions are

obtained for single through-the-thicka:ess cracks and single quarter-

elliptical corner cracks in attachment lugs. As mentioned previously, the

following methods are used for through-the-thickness and corner cracks.

For through-the-thickness crack problems:

(1) Simple compounding method

(2) Two-dimensional cracked finite element procedure

(3) Weight function or Green's function method

For corner crack problems:

(I) Simple one parameter compounding method

(2) Two-dimensional Green's function solution modification

(3) Rigorous three-dimensional cracked finite element procedure

This section also describes the method for developing the stress in-

tensity factor for problems with residual stresses (due to the installation

of interference-fit bushings). A stress analysis of unflawed straight

attachment lugs was also performed and is presented here. Note that all

the specimens tested in the Group I test program are straight attachment

lugs and the methodologies described in this section are evaluated using

Croup I test results.

1. STRESSES IN AN UNFLAWED STRAIGHT ATTACHMENT LUC

A primary item of interest in the analysis of cracked attachment lugs

is the stress distribution in the uncracked state. This is important for at

O! least three reasons. The location of the peak tangential stress determines

the location of the most critical crack. The stress intensity factor for a

very small crack is proportional to the stress concentration factor value.

Finally, the weight functior '•Lhod of estimating stress intensity factors

"requires the stresses on the r_,spective crack surface in the uncracked lug.

l1



The conventional displacement finite element method was used to obtain,

for an uncracked straight lug, (1) the tangential stresses along the edge of

the hole, (2) the stress distribution on the prospective crack surface, and

(3) the pin-bearing pressure distribution along the contact surface between

the pin nnd the lug. The rigidity ratio, Epin/Elug, is assumed to be 3.0 in

the present analysis.

Figure 3-1 shows a typical model used in the analysis. Due to symmetry,

only the upper half of the lug was modeled. The lug and the pin were rep-

resented by a set of constant-strain triangular and quadrilateral elements..

To load the model, a concentrated force was applied at the center of the pin

and reacted at the other end of the lug. Spring elements (S) were used to

connect the pin and lug at each pair of nodes having identical nodal coor-

dinates all around the periphery. The area of contact was determined itera-

tively by assigning a very high stiffness to spring elements which were in

compression and a very low stiffness (essentially zero) to spring elements

which were in tension. A neat-fit and no friction assumptions were made for

the pin-to-lug assembly.

The calculated tangential stresses (normalized by the average bearing

stress) along the edge cf the hole for a pin lomding applied in the 00 direction

are shown in Figure 3-2 for R o/Ri ratios of 1.50, 2.25 and 3.00. As antici-

pated, the maximum tangential stresses are located at about 90 away from

the axis of the lug, and the minimum stresses (small amount in compression)

are located at the 1800 location.

The tangential stresses for pin loading applied in axial compression

(0 =1800) are shown in Figure 3-3. As can be seen from this figure. the

resulting stresses at 0 = 90°0 arq small tensile stresses. Thus, reversing

the loading direction does not cause a stress reversal at the critical 900

location. Furthermore, the tensile stresses produced are relatively small.

The unflawed elastic stress distributions on the prospective crack

* plane for axial tension applied in the 00 direction are presented in Figure

3-4. These values are also tabulated in Table 3-1. The tangential stresses

along the x-axis shown in the figure are normalized by the average bearing

stress. It is clear that the gradient of the stress distribution close to

the edge of the hole is very steep, especially for a lug having a smaller

R I/R ratio. The corresponding elastic stress concentration, factors at the

edge of the hole.# /Obr' are plotted in Figure 3-S. The equation of the

* 12
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"logarithmic straight line shown in this figure fits the computed values with-

in 0.5 percent, as shown In the accompanying table.

The computed pin-bearing pressure distributions along the contact sur-

face are shown in Figure 3-6. The figure shows that the shape of the dis-

tribution is close to uniform at the central portion of the contact surface.

As the R /Ri ratio increases, the pressure decreases near 0 = + 900 but
0increases near ) = 0

2. STRESS INTENSITY FACTORS FOR THROUGH-THE-THICKNESS CRACKS

The development of stress intensity factor solutions for single through-

the-thickness cracks in attachment lugs by various methods are described in

this subsection. Also included in this subsection are the methods for analyz-

ing attachment lugs with interference-fit bushings and elasto-plastic analy-

sis for analyzing lugs which are loaded above yield.

2.1 COMPOUNDING METHOD APPROXIMATIONS

Stress intensity factors for an axially-loaded straight lug with a

single through-the-thickness crack can be estimated by the compounding of

known K solutions. The compounding method has been used for crack growth

analysis of complex structure [14].

As Figure 3-7 shows, the actual lug configuration is approximated as an

infinite strip of width 2R containing a central hole of radius Ri. A
0

single through-the-thickness crack is assumed to be present at 0 900 to

the axis of the lug. The length of the crack is al, measured from the edge

of the hole. The total pin load P is assumed to result from a uniform

distribution of radial pressure from 0= -67.50 to 67.50, and to be reacted

by a remote uniform stress P/(2R B), where B is the lug thickness."0

The stress intensity factor for the configuration shown in Figure 3-7

can be approximated by combining a number of known K solutions. The basic

solutions are for cracks emanating from holes in infinite plates. Multi-

plicative correction factors are used to modify these infinite plate

solutions to account for the effects of finite width.

19
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2.1.1 Cracks at Holes in Infinite Plates - The loading shown in Figure 3-7

consists of pin loading in one direction and remote loading in the other.
"Tweed and Rooke [15) have obtained the solution for a crack emanating from

a circular hole in an infinite plate subjected to remote loading. This is

* Case 31 in the compendium given in Appendix A. The formula for K31 fits

Tweed and Rooke's solution within 0.5 percent.

The general solution for the same geometry subjected to arbitrary radial

loading at the hole is given in Reference[16]. Case 35 in Appendix A gives an

equation which closely fits the special case of uniform rodial pressure ap-

plied from =--67.5° to 0= 67.50, and from (1800 - 0) = -67.50 to

(180 - 0) 67.50.

2.1.2 Symmetrical Line Cracks in Strips - The solution for a symmetrical

line crack of length 2a in an infinite strip of width 2b under uniform0

tension stress o is well known. It is given in Appendix A as Case 21.

The function 0 2 1 (X ) is called the width correction factor, because it is

applied multiplicatively to the infinite-plate K solution to give the

correct solution for the strip.

Case 22 in Appendix A gives an approximate solution for the symmetrically-

cracked strip subjected to concentrated splitting forces P applied to both

surfaces of the crack at the centerline. This approximation is derived by the

similarity method from three known K solutions, as follows&

Figure 3-8 shows the four similar configurations. In all four cases the

crack lengths are the same and the shear stresses vanish along the lines

x = +b. The unknown solution is K2 2 ; the solutions for the other three cases

shown are known in closed form. K is the well-known solution for periodic

collinear cracks subjected to uniform loading (17]:
I

K S V 1 /'- 2b tf rS\/ " j/ tan -(1)

19 0 V a 2b
0

The solution K20 for periodic collinear cracks subjected to central

spittting forces on the crack surfaces is given by Tada et al (18].

2
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Notice in Figure 3-8 that Cases 21 and 22 are identical geometries, as

are Cases 19 and 20. Furthermore, Cases 20 and 22 are identical in the ap-

plied loadings, as are Cases 19 and 21.

Thus, the correction factor approach can be applied in two alternative

ways to estimate K2 2 . The ratio (K2 1 /K1 9 ), a correction factor to account

for the difference between a finite-width strip and a periodic crack array,

can be multiplied times K2 0 , the solution for the periodic crack array with

the Case 22 loading condition. Alternatively, the ratio (K12 0 /K 19 ), a correc-

tion factor to account for the difference between remote loading and point

loading on the crack line, can be multiplied times K2 1 , the solution for

remote loading of the Case 22 geometry. Either way, the resulting equation

6 for K22 is the same:

K K

K 21 K20K! K22 K (3)2-. K1 9

2.1.3 Effect of Eccentricity - The crack in the lug is eccentrically located,

so eccentricity must be considered. Isida [19) has obtained the stress in-

tensity solution for an unsymmetrical crack in a strip under uniform tension.

Equations are given in Appendix A, Case 26, which fit Isida's numerical

results within about 3 percent (within I percent for a/bn < 0.6). There are

"two stress intensity formulas, K"(N) for the crack tip nearest the edge and
(F) 26

K 26 for the crack tip farthesc from the edge. For the syumetrical cracki •26

both formulas reduce to the equation for K2 1 .

Case 27 in Appendix A gives an approximate solution for the unsyimetri-

cal crack subjected to splitting forces on the crack surfaces at the strip

* centerline. This solution is obtained by the Sia-ilarity Method from the five

known K solutions shot... in Figure 3-9. (The solutions for Cases 12 and 13

are well known and are given in Reference (18).) There are two eccentricities

in Case 27: the crack is not centered on the strip nenterline, and the load

� is not centered on the crack centerline. Remove both eccentricities and

Case 22 is obtained.

24
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The crack is not centered on the strip in Case 26. Remove this eccentri-

city and Case 21 is obtained. Therefore, the correction factor to account

for eccentricity between the crack and the strip is the ratio K26/K2t.

The load is not centered on the crick in Case 13. Remove this eccentri-

city and Case 12 is obtained. Therefore, the correction factor to account

for eccentricity between the loading po; at and the crack is the ratio K3/K

When both correction factors are applied to K22 the approximte formula

for K2 7 , given in Appendix A, is obtained:

()K (N) K(N

K(N) K, 26 13 (4)
27 22 K21 K12

2.1.4 Cracks at Holes in Strips - The stress intensity solutions for cracks

at holes in infinite plates and for line cracks in strips can be combined to

obtain approximate K formulas for cracks at holes in strips. The resulting

formulas can be superimposed to estimate K for a pin-loaded lug with a

crack.

C Case 41 in Appendix A gives an approximate solution for a uniformly

loaded strip with a crack emanating from a central hole. Referring to

Figure 3-10, one would expect the solution for K 1  to be approximated by

the product K31 K 26/K I.

This product, however, does not account for the interaction between the

hole and the edges of the strip. The gross area stress concentration factor

given by Peterson [201 for a center hole in a strip can be approximated by

the following formula:

r 2
k (rib) - 3 sec (R) - 3 2V (rib) (5)

As the crack length a1  approaches zero, K has a known asymptotic

solution in terms of the stress concentration factor. i.e.

KI 2
uir (K ) k (rib) - 02 (rib) K (6)
/r1. t 3 21 K314atlr .O
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To satisfy Equation(6), a hole-strip width correction factor 4)21 (rib)

must be included, so that the approximate solution for Case 41 is

K K3t K26

K4 1  K K 26  (r/b) (8)41 K it 21

Case 44 in Appendix A is an approximate solution for a strip with a

crack at a central hole, loaded aymmetrically at the hole. This solution is

derived by the same approach used to derive K4 1. In this case, however,

the gross area stress concentration factor for the uncracked case is not

known. Figure 3-5, obtained by finite element analysis, could have been used

here to estimate the required kt, but to do so would have compromised the

independence of the solutions generated by the compounding and finite element

methods. Based on engineering judgment, therefore, 421 (r/b) is appended to

product solution obtained from Figure 3-11 to approximate K4 4 , just as was

done for Case 41. Thus, K is approximated by the equation

K35 K27
K44 'p K13 021 (r/b) (9)

2.1.5 Cracked Lug - The final step in the derivation of a compounding

method stress intensity factor for the pin-loaded straight lug is a simple

superposition. As demonstrated in Figure 3-12, the result of superimposing

Caes 41 and 44 is identical to the result of superimposing the lug approxi-

mation in Figure 3-7 with itself (oriented upside-down and backwards). Thus

1
41 (K41 * X4) (10)

Equation (10) was used to compute the stress intensity iactors for

Ro /K ratios of 1.50, 2.25 and 3.0, and the results are tabulated in

Table 3-2.

2.X TO-DIRENStONAL CRACKED FINITE EI.DHENT METHOD

because of the ease with which the finite-elewent method handles com.-

* plea geometries and bouneary conditions. this method has been used exten-

sively to study fracture in cnmplex structures. Two special crack-tip
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singularity elements, usually referred to as cracked elements, developed at

Lockheed-Georgia [8] have brought the power and flexibility of the finite-

element method to bear much more effectively on fracture mechanics problems.

This method has been used to analyze a crack in an unsymmetric lug of a

C-5 engine pylon [8]. It has been modified slightly to accurately account

for the change in pin-bearing pressure distribution for the change in crack

length. The following discussion describes this method as it was used in

the calculation of stress intensity factors for cracks at attachment lugs.

Figure 3-13 shows a typical finite element model used for a single crack

emanating from a straight attachment lug. A 10-node high-order singularity

element [81 was used at the crack tip region for computing the stress inten-

sity factors. The remainder of the finite element modeling details was

identical to those described in the stress analysis section for the uncracked

lug, including the iterative determination of the contact area. The solution

was obtained for several outer-to-inner radius ratios, R /Ri, and for a

succession of cracks having normalized lengths, c/(R° - Ri) ranging from 0.1

to 0.9. As in the case of stress analysis, the rigidity ratio, Epin/Elug'

of 3.0 is assumed in the fracture analysis.

The pin-bearing pressure distributions obtained for single cracks ema-

nating from attachment lugs loaded by neat-fit pins are presented in Figures

3-14 through 3-16. These figures show the effect of crack length on the pin-

bearing pressure distributions for a straight lug having R /Ri ratios of

1.5, 2.25 and 3.00, respectively. When there is no crack, the distribution

is close to uniform at the central portion of the contact surface, unlike

*" the cosine distribution commonly assumed in literature. There is no contact

* at the expected crack location, 0 = -90 . However, as soon as a crack

appears, the contact spreads to one side ("upper lip") of the crack mouth.

- .As the crack opens, the other side ("lower lip") of the crack mouth moves

away from the pin resulting in no pin-bearing pressure on the lower lip.

* Figures 3-14 through 3-16 show that the longer the crack, the higher the

pin-bearing pressure on the upper lip of the crack mouth, especially for a

small R /Ri ratio. For example, for a R /Ri ratio of 1.5, the normalized

pressure at the upper lip of the crack mouth increases from zero for

c/Ri = 0 to more than twice the average pressure for c/Ri Ž 0.3. The pres-

sure distribution elsewhere on the contact surface also changes with the

crack length. For larger crack sizes, the pressure decreases from an initial
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maximum value at the crack mouth to a local minimum and then gradually in-

creases again and approaches another maximum before decreasing to zero at

the end of the contact surface.

The effect of pin-bearing pressure distributions on stress intensity

factors is shown in Figure 3-17 for single cracks in a straight lug having

a Ro /14 ratio of 1.5. In Figure 3-17, the circle and triangle symbols are

results obtained from Reference [91*, where it is assumed thaý. the pin-bearing

pressure distributions are cosine and uniform distributions along the 180-

degree contact surface, respectively, and that such distributions remain un-

changed with the crack length. The square symbol represents the results

obtained using the present analysis, which has properly accounted for the

change in pressure distribution as the result of crack extension. As can be

seen from this figure, when the crack is small (c/Ri < 0.05), the current

computed K-value is practically the same as that obtained using a uniform

pin-bearing pressure distribution. However, as the crack length increases,

the current analysis gives a lower K-value than the others. This is because

when the crack length increases, the pressure near 0 = -90° increases

markedly and exceeds the average pin-bearing pressure (see Figure 3-14).

This high pin-bearing pressure, when applied near 0 = -90° in the direction

almost parallel to the crack orientation, tend to close the crack surfaces,

hence reducing the stress intensity factor as discussed by Brussat [16].

The computed normalized opening mode stress intensity factors using a

steel pin and an aluminum lug model are presented in Figure 3-18 as a function

of normalized crack length (c/Ri ) for single cracks emanating from the hole

wall of straight attachment lugs with Ro/Ri ratios ranging from 1.5 to 3.0.

In all cases, the computed sliding-mode stress intensity factors, K I, are

much smaller than those of the opening mode, K,, so they are not presented

in the figures. It should be noted that the K-values were normalized in

terms of the average bearing stress, 0'br, instead of far-field gross section

stress, ao. To convert these normalized factors in terms of %a, one can

simply multiply these normalized factors by the corresponding ratio of

S0o/Ri . For convenience, the computed K-values normalized in terms of the

average far-field stress are tabulated in Table 3-3 as a function of

*The results are wislabeled in Reference [9]; uniform distribution results are

labeled cosine distribution and vice versa.
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normalized crack length (normalized by the net section). Note that

at the edge of the hoie (c/Ri M 0), the normalized stress intensity factor

was obtained by multiplying the stress concentration factor determined

from unflawed stress analysis by 1.12, which was derived by Gross et al (213

for a straight edge crack in a finite-plate specimen loaded in tension. Un-

flawed elastic distributions on the prospective crack plane and the corre-

sponding stress concentration factors at the edge of the hole have been given

in Figures 3-4 and 3-5, respectively.

Studies were also made to investigate the effects of a single crack

versus a symmetrical double crack and relative rigidity of the pin and the

lug (Epin/Elug). A typical comparison of K-values obtained for a single

crack and a symmetrical double crack in a straight aluminum lug loaded by a

steel pin (Epin/Elug = 3.0) is shown in Figure 3-19. As anticipated, the

computed K-values for a double crack are higher than those of a single crack,

and the difference increases with the crack Length. It increases from less

than 17. for c/14i _ 0.2 to about 37% for c/4 i = 0.9. To study the effect

of the relative rigidity of the pin and the lug on the stress intensity

factors, the computed K-values for a single crack emanating from the hole

wall of a steel lug loaded by a steel pin (Epin/£lug = 1.0) is also included

in Figure 3-19. As presented in this figure, the K-values computed for a

combination of a steel pin and steel lug is slightly higher than that of the

* steel pin and the aluminum lug. A comparison of stress distribution along the

0 - -900 radial line for steel lug-steel pin and altuminum lug-steel pin

combinations is presented in Figure 3-20. These stresses can be used in

conjunction with Green's function to calculate the stress intensity factors

appropriately.

2.3 Th•E WEIIGW1 FUNCTION M•IMOD

The linear superposition method has been used frequently to obtain the

stress intensity factors for various types of crack problems. The principle

6 of superposition of linear elasticity implies that, for the purpose of cal-

culating stress intensity factors, loading the crack faces with a(x) is

equivalent to loading the cracked body with loads which produce W(x) on

the prospective crack taces in the absence of a crack.

figure 3-21 shows the scheme of the linear superposition method. The

stress intensity factor ot problem 3-21a is equivalent to the sum of that of

*1 4,
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problems 3-21b and 3-21c. Since problem 3-21b is crack free, the stress-
intensity factor of problem 3-21a is equivalent to that of problem 3-21c.
By idealizing the stress in problem 3-21c as N discrete loads, P1 .... PN)
then the stress-intensity factor, for a given crack length c, can be com-
puted from the following equation

N N

K(c) = Ki = ki(xic) P ( ((1)

where ki(xc) is the normalized stress-intensity factor due to the ith
load, Pi, applied at location xi. For arbitrary distributed stress, 0 (x),
instead of discrete forces, Pi, Equation (11) becomes

c
K(c) f k(x,c) . a(x) dx (12)

0

In Equation (12), k(x,c) is the weight function (or Green's function).
Bueckner [22] and Rice [23J defined the weight function as

k(xc) H •u(xc) (13)

for a symmetrical load system on a linearly elastic body containing a crack
of length c. In the above equation, H is an appropriate elastic modulus:
it is E/(l-v 2 )for plane strain and E for generalized plane stress. K(c)
is the known stress intensity factor and u(x,c) is the y-component of the
crack surface displacement at x. The weight function was shown [22,23] to
be unique for a given structural geometry and crack size regardless of the
loading condition. Therefore, it can be developed for one load condition
and then utilized to determine the stress-intensity factor for any other
load condition.

The closed form expressions for the weight function for edge cracks
f11,24], center cracks (25] and collinear cracks [26] in a wide panel are
available, However, the closed form weight function for cracks emanating
from a holeis not available. Therefore, the weight function for a straight
center crack has sometimes been used to estimate the stress-intensity factor
for radial cracks emanating from a circular hole (27-29], located in the
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geometric center of a long plate. Impellizzeri and Rich [10] modified the

weight function derived by Bueckner [ii] for an edge crack in a semi-infinite

plate to include the geometric correction factors for estimating the stress-

intensity factor of a crack in an attachment lug. In order to establish the

appropriate values of the derivative 3u/3c, to be used in Equation (13),

Grandt [30] supplemented Bowie's solutions [31] for a radially-cracked hole

with a finite element analysis to obtain the corresponding crack-mouth open-

ing displacements. Hsu and Rudd [32] developed thd Green's function from

the stress-intensity factors computed using the high-order singularity ele-

* ment for a double-radial crack emanating from an open hole and subjected to

a pair of concentrated loads on and perpendicular to the crack surface.

This approach is capable of accounting for the effect of hole curvature,

finite width and the profile of the lug head. Therefore, it was used to

develop the weight function for through-the-thickness cracks emanating from

the hole of attachment lugs.

By defining the weight function G = k(c/1)1/ 2 and • = (x-R.)/c and sub-i

stituting them into Equation (12), one obtains

K(c) = Vo I G(c,ý) • (•) dý (14)

0

where or is the uniform far-field stress and a = a/a° is the normalized

unflawed stress distribution on the prospective crack surface.

The weight function G, for a single radial crack emanating from a

circular hole of the lug and subjected to a pair of concentrated forces on

the crack surfaces, as shown in Figure 3-22a, is obtained from the computed

stress-intensity factor using 2-D cracked finite element analysis for various

Ro/Ri ratios, crack lengths c/(R o-Ri), and (x-Ri)/c ratios as follows:

R
G (o ,X-) = k(x,c) \/It (15)G(R-OR C)c R i

Finite element methodology becomes difficult to employ when the concen-

trated forces are applied close to the crack tip, say (x-R )/c > 0.9.

In this range the corresponding weight functions were obtained using

the edge crack model as shown in Figure 3-22b. The weight function, G1, for

such edge cracks is available in Reference [18], and can be written as
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2 3.52(1-(x-Ri)/c) 4.35 - 5.28 (x-R )/c
G1 V 1/2 1/2
1 T (1-c/2b)3 /2  (1 )

2b

"r 1

1.30-0.30 ((x-)Ic) 2  + 0.83-1.76 (x-R Iic t-(1-(x-Ri)/c) (16)

-((x-R )/C) 2

In the conventional finite element method, the external force can only

"be applied at nodal points. When the crack length is small, it becomes

cumbersome to refine the model such that there will be enough nodes along

the crack faces for the purpose of computing the K and G values. There-

fore, an alternate approach is used. For each crack length c, the K and

G values were calculated at each available nodal point on the crack face,

say (xi-R 1)/c, using a finite element model for the configuration shown in

@ Figure 3-22a and Equation (15). The weight function G1 for an edge crack

in a finite width strip (Figure 3-22b) was then calculated at the same loca-

tions, (xi-R )/c, using Equation (16), and the ratio was obtained.

r ((xj-Ri)/c) = G ((x j-R)/c)/G ((x j-R i)/c) (17)

Assuming that r approaches I as (x -R f)/c approaches 1, a least

squares polynomial fit is obtained.

•-. MI r ((x-Ri)/c) = Cj((x-R)Ic)-1 (18)

j=1

"The weight function at any location on tne entire crack surface can

then be computed using Equations (16) and (18) as

"G ((x-Ri)/c) r ((x-R )Ic) GC ((x-R )/c) (19)

The results obtained using the aforementioned procedure are shown in

Figures 3-23 through 3-25 for R /Ri ratios of 1.50, 2.25, and 3.00,

respectively. The symbols shown in these three figures are the discrete

values obtained using the finite element method and the curves are obtained
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using Equation (19). As seen from these figures, this alternate approach

gives an excellent estimation of G-values at any desired location.

With a knowledge of the weight functions, G, and the unflawed stress,

u, on the prospective crack surface with the crack absent, one can numeri-

cally integrate in Equation (14) to obtain the corresponding stress-intensity

* .factor for a radial crack in an attachment lug.

Integration of Equation (14) can be carried out accurately and effici-

ently by the Gaussian quadrature formula. In order to perform the Gaussian

integration, the integral in Equation (14) needs to be transferred into the

well-known Newton-Cotes quadrature formula for the range of integration be-

tween -1 and +1. This can be easily done by assuming that

2= - 1, or = (E + 1), (20)

"and the integral of Equation (14) becomes

n
Sf ff a (•)G(c,•)d• = ]F(•)d• = Hi F(•i) (21)

0 -1

where

°...
F(M) = a . Cc (22)

The abscissae and weight coefficients (Hi) of the Gaussian quad-

"rature formula, Equation (21), for n up to 10 are given in Reference [331.

With this transformation, the stress-intensity factor can then be calculated

* Ifrom the following equation:

n

K Ho F iF()i (23)
0 i=1

An evaluation was made on the calculation of the stress-intensity factor

using Equation (23). It was found that, for n = 9, the computed K values

using Gaussian integration are essentially the same as the ones obtained using

* trapezoidal rule numerical integration with 400 equal integration intervals.

52



Therefore, the more economical Gaussian integration was; exclusively used in

the K calculation using the weight function approach.

An important point on the development of the Green's function for attach-

ment lugs is to be noted at this point. In the case of an attachment lug

loaded by a pin, which is a contact problem, the pin bearing pressure distri-

bution between the lug and the pin varies with the crack length (Figures

3-14 through 3-16). The pin bearing pressure distribution has a significant

effect on the unflawed stress distribution (on the prospective crack surface)

and on the stress-intensity factors (Figure 3-17). In the case of finite

element analysis of cracke(o lugs, the pin bearing pressure distribution was

taken into account in the analysis itself. In the case of the Green's function

method, the pin bearing pressure distribution variation can be accounted for

by two methods.

The first method is to use the Green's function developed above which

should strictly be used only in conjunction with the correct unflawed stress

distribution on the prospective crack surface for the varying pin bearing stress

distribution as the crack length changes. The problem of calculating the pin

bearing pressure distribution as the crack length changes is statically in-

determinate, unless a fracture analysis, such as the finite element solution

descr'bed before, is carried out. But, once a fracture analysis is made,

then there is no need for the varying pin bearing pressure distribution,

because the needed stress-intensity factors can be obtained from the fracture

analysis. Thus, this method becomes redundant and is discarded.

The second method is to use available data of stress-intensity factors

(from the finite element procedure, Figure 3-18) and the unflawed stress

distribution on the prospective crack surface (Figure 3-4) to modify the

_ Green's functions to account for the varylng pin bearing pressure distribu-

tion. Such modifications have been made for the Green's function and are pre-

sented in Figures 3-26 through 3-28 for outer-to-inner radius ratios of

1.50, 2.25 and 3.00, respectively, whereas Figures 3-23 through 3-25 corre-

4 spond to the original or unmodified Green's function. For calculating the

stress-intens itV factors in Naimple attachment lugs loaded by Dins, the

('rten's functi•l.s in Figures "3--26 throuLgh 1-28 should be used. The Green',.

fuwCt ions givt!, In l Fi uros 3-2ý through 3-25 are still useful and needed in

the auialvsis of at tactittlet lug]s where the unflaw-d strvss distributrion otl the
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prospective crack surface does not depend on crack length, for example,

residual stresses due to the installation of an interference-fit bushing.

Tables 3-4 through 3-9 provide the original and modified Green's function

"values in a tabular form at several (x-R I)/c locations and different crack

lengths for outer-to-inner radius ratios of 1.50, 2.25 and 3.00.

In order to put the results in perspective, Figure 3-29 compares the

"stress-intensity factors obtained by the compounding method, finite element

method and original and modified Green's function methods. As can be seen

from the figure, the results obtained by the modified Green's function

"method match the finite element solutions. The results of the original or

" unmodified Green's function method tend to be higher, especially for the R o/R

ratio of 1.50. The difference betw(.en the two Green's function methods

essentially reflects the effect of pin bearing pressure distribution as the

crack length changes.

Figure 3-29 also compares the compounding method solution to the other

solutions. For R /Ri ratios of 2.25 and 3.00, the compounding solution

,. gives excellent estimates of stress-intensity factors, except when the crack

length is very small. The error at small crack lengths could be corrected

* by making proper use of the stress concentration factor values for the lugs,

"Ktb) given in Figure 3-5. However, for Ro/Ri 1.50 the compounding solu-

tion tends to overestimate the stress-intensity factors, like the original

Green's function method. This error may be partially due to the major dif-

ferences between the true pin bearing pressure distribution and the ideal-

* ized distribution used in the compounding method.

2.4 ANALYSIS OF LUGS WITH INTERFERENCE-FIT BUSHINGS

* In order to improve the crack initiation and crick growth lite, the

concept of installing an interference-fit bushing to introduce beneficial

resitual stresses around the hole of the lug prior to pin fitting has been

used in aircraft attachment lug desigig. For a given fatigue load cycle,

* the installation of an Interference bushing can reduce the effective tangen-

tial stress range at the likely location of crack initiation, resulting in

improvement in fatigue and crack growth life. It also reduces fretting

damage of the hole wall of the log.

5
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The stress-intensity factors for a crack emanating from an attachment

lug having an interference-fit bushing can be estimated using the weight

function aporoach similar to the one reported in Reference [34]. The proce-

dure consists of two major steps. First, the effective unflawed stress dis-

tribution on the prospective crack surface was obtained by superimposing the

residual hoop stresses, re, due to the installation of an intereference-fit

bushing on the applied tangential stresses, oap, obtained due to the appli-

cation of a pin loading. Next, a crack was introduced in this stress field

by removing the tractions on the crack faces and computing the corresponding

effective stress-intensity factor using the developed weight function, G,

and the following equation:

K = \/I- f (aap + orre) G(c,Q)d (24)

0

Unflawed Stress Analysis

The installation of an interference-fit bushing creates a compressive

radial stress and a tensile hoop stress in the lug in a manner similar to a

thict' wall cylinder under internal pressure. On this basis, an approach

similar to that of Seely and Smith [35] for a thick-wall cylinder under

internal pressure is used to compute the residual stresses in the lug due

to the installation of an interference-fit bushing. Before the residual

stresses in the lug can be computed, the pressure, PS, on the surface of

contact between the bushing and the lug must be determined.

Let R and Ki denote outer and inner radii of the lug and r and

ri denote outer and inner radii of the bushing before the interference-fit

installation, respectively. Let RH be the inner radius of the lug (and

also the outer radius of the bushing) after installation, and let R be

the ditterence in these radii before installation.

r 0 (75)

After the installation o1 the bushing, the inner radius at the lug will

be larger than its initial value by an amount, 65) which is related to the

unknown contact pressure as



"'~s R R/R:o + R2 L

",-K - =-(26)". L ýR R 2

where EL and jL are the Young's modulus and Poisson's ratio of the lug.

"At the same time, the outer radius of the bushing will be changed (decreased)

by an amount, 62, which is given by the following equation:

62 E 2(R 2 (27
B".i R r i

4 where EB and gB are the Y.ing's modulus and Poisson's ratio of the bush-

ing.

At the completiot. of the installation process, the difference in these

original radii, 6 R, disappears as a result of the changes in the length 6,

and 62. Therefore, the sum of the magnitudes of 61 and 62 is equal to

6 i.e.
R

P R2 +R2 E R2+r2PR E 2 R1  2 2

The contact pressure is obtained from the above equation as

P E - + + (29)Ro- - RI B (R r r B

S

With contact pressure determined, the residual stresses in the lug due

to the installation of an interference-fit bushing can be calculated using

the following equations:

66
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2 2
Ps 01

O' R 2 _R2 x 2and x; xR 1  (30)

R R1 x

where x is the radial distance as shown in Figure 3-30.

". Equation (30) can be used to compute the residual tangential

. stresses along the radial direction (x-axis) in attachment lugs due to the

installation of interference-fit bushings. In the following discussion,

results are presented for attachment lugs with lug outer radius to bushing

inner radius ratio (Ro /r i) of 2.25. The nondimensional parameters con-

sidered in the analysis are interference levels (6 R/r ), bushing-to-lug

* rigidity (E%/E,) and bushing thickness /ri). The effects of these param-
tBi

eters on the stress distribution along the x-axis in attachment lugs are

"presented in Figures 3-30 through 3-32. Figure 3-30 shows the increase in

residual stresses with increasing diametral interference for a bushing-to-

a lug rigidity ratio (E B/E ) of 3.0 and a bushing thickness (t B/r i) of 0.12.

Figure 3-31 shows the increase in residual stresses with incrasing bushing-

- to-lug rigidity ratio (E B /E) for a bushing thickness (t B/r ) of 0.12 and

an interference level (6 /r ) of 0.00533. Figure 3-32 shows the increase

@ in residual stresses with increasing bushing thickness (t B/r i) for a

bushing-to-lug rigidity ratio (EB /E1 ) of 3.0 and an interference level

(6R /ri) of 0.00533.

The tangential stresses along the x-axis due to the application of pin

5 loading are then computed using the finite element method. In the analysis,

it is asquwed that the bushing and the lug remain in contact and that no

Slippage occurs along the hole wall surface during the application of the

load. The computed tangential stress normalized by the far-field applied
0

stress for a lug with a R /ri of 2.2' are showns in Figures 3-13 and 3-34.

Figure I-il depicts the decrease in stresses due to pin loading with in-

creasing bushing-to-lug rigidity ratio (E /EK) tor a constant bushing thick-

"ness (t /r i) of 0.12. Figure 3-)4 presents the decrease in stresses due to

pin loading with increasing bushing thickness (t /r.) for a consttant bushing-

to-lug rigidity rat in (K i/ ) o. t 1.0

B C.
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The results presented in Figures 3-30 through 3-34 pertaining to the

stress analysis of lugs with bushings should be used with cautioh, in the

sense that they can be used as long as the assumptions are not violated.

In other words, these results can be used as long as there is sufficient

interference to prevent separation between the bushing and the lug. When

the interference level is small and/or when the crack length is large there

will be separation, which again depends on the geometry and the magnitude of

the applied loading. Also, the above results cannot be used when the total

effective stress (residual stress plus applied stress) exceeds the

material yield strength. If the total effective stress exceeds the material

yield strength, a nonlinear elasto-plastic finite element analysis such as

used in Reference [34] should be conducted to obtain the total effective

stress. In the current study, only the linear analysis is performed. Once

the total tangential stresses are obtained by superposing residual stresses

and the applied stresses, then they can be used to calculate the stress in-

tensity factors for a crack emanating from an attachment lug having an

interferenee-fit bushing by using Equation (24) where G(c,ý) is the origi-

nal or unmodified Green's function.

Stress-Intensity Factor Analysis

To study the effects of various parameters un actual (dlmenslonpl)

* stress-intensity factors rather than nondimensional, a Physical lug

having an outer radius of 1.6875 inches with a bushing inner radius of

0.75 inch (R /r = 2.25) subjected to a far field stress (a ) of 6 ksi andot 0

stress ratio (Ifar) of O.t is considered in this discussion. For this lug

configuration and loading, an effective stress ratio (Reff) at the lug hole

wall (x = R) as a function of interference Levels can be computed and is

presented in Figure 3-35a. Figure 3-35b shows the variation of Reff along

the x-axis of the lug for an interference level (/r /ri ) of 0.00533. It is

seen from the figure that Reff is constant almost throughout the net sec-

tion (x-axis) except near the outer aurface of the lug.

The stress-intensity factors were computed using Equation (24) and are

presented in Figures 3-36 and 3-37. Figure 3-36 shows the effective stress-

* intensity factor range, AK, for various bushing-to-lug rigidities (E B/E )

for a given bushing thickness (t B/r i) of C.12. The data corresponding to

"E /E 0 represent a simple lug with no bushing. It is clear fron
B I,
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Figures 3-35a and 3-36 that the installation of the interference-fit bushing

causes an increase in the effective stress-intensity factor ratio, Reff =

S7min/amax Kmin /K max, but a significant decrease in the stress-intensity

factor range, AK. This vill result in the reduction of fatigue crack growth

rate. The effects of bushing thickness (t B/r i) on the effective stress-

intensity factor range, AK, are presented in Figure 3-37. Based on the re-

sults shown in Figures 3-36 and 3-37, it may be concluded that: (1) for

constant bushing thickness, an increase in the bushing rigidity decreases the

effective stress-intensity factoc range; and (2) for constant bushing rigid-

ity, an increase in bushing thickness decreases the effective stress-intensity

factor range.

3. STRESS-INTENSITY FACTORS FOR CORNEY CRACKS

One of the most common types of flaws for which there exists no closed

form analytical solution is the corner crack at a circular hole. To date,

several approximate methods have been proposed for computing the stress-

intensity factors of a quarter-elliptical crack emanating from the corner of

an open hole located in the geometric center of a plate. The methods range

from an empirical equation which was developed using the fatigue crack

growth method of calibrating the measured crack growth rate, da/dN, and the

stress-intensity factor range, AK, to one- and two-dimensional compounded

solutions, to the sophisticated three-dimensional finite element analysis.

In this section, three methods in an increasing level of complexity and

sophistication are presented for the determination of the stress-intensity

facturs for single corner cracks in aircraft attachment lugs.

4
3.1 ONE-PARAMETER COMPOUNDING APPROXIMATION

The corner crack is more difficult to analyze than the through-the-

thickness crack because it has both surface length and bore depth dimensions

and both must be considered in the crack growth analysis. . possible

simplification is to assume a fixed relationship between crack depth "a" and

surface length "c", so that only one crack length parameter is independent.

This was the approach used in Reference (14] to analyze corner cracks at

fastener holes. The following stress-intensity correction factor, governing

the growth of the norner crack in the length direction, was verified empir-

ically on open hole fatigue coupons in Reference (14]:
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(c) 0.2886
4) 1- 0.86(31)

2 2* ~71a c
1 + 2(i ~

This factor can be multiplied by the through-the-thickness crack solu-

tion, KLUG), obtained by the compounding method and given in Equation (10).

*K(c) WLU (32)

* -Equation (32) provides a simple mt-parameter K estimate for the point

*near the lug face. This factor can be used even after a >B, to smoothly4 change K as the corner crack becomes a through-the-thickness crack.

Equation (32) was used to estimate the stress-intensity factors for

corner cracks at attachment lugs having R 0IR iratios of 1.50, 2.25, and

i"oi

3.00. These results are tabulated in Tables 3-10 and 3-11 for B/R, = 213

.,and 1/3, respectively. Note that, in the calculation, the depth-to-length

ratio (a/) was assumed to be constant and equal to 1.33, which was found

eXDerimentally by Schijve and Hoeymakers [:2].

* ~3.2 TWO-PARAMETER WEIGHT FUNCTION APPROX114ATION

In an earlier contractual program with the Flight Dynamics Laboratory, H~su

et al, (36] developed a simple procedure for estimating the stress-intensity

Snfactors along the boundary of quarter-elliptical corner cracks emanating

from fastener holes from corresponding through crack solutions. Correlation

between the calculated stress-intensity factors and those deduced from the

tests were good. A similar procedure can be used to estimate the stress-

* ~intensity factors along the periphery of a quarter-elliptical c.orner crack

in an attachment lug.

The stress-intensity factor for a single through-the-thickness crack

of length e in an attachment lug is given by

i~ Nir 7 T ( c( 3

where OT (c/11) is the through-the-thickness correction factor.
Then the corresponding stress-intensity factor for a single quarter-

elliptical corner crack can be written as
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K , " Mo 8 ( )'( ( Ri Ri)( (34)

for A
C

and

for --
C

where

M -F + - (1-F) (36)
C C

in which a is the elliptical angle measured from the hole wall, x is the

distance from the center of the hole to the particular point of interest on

tthe crack periphery, 1-11/0 is the combined front free surface and flaw shape

factor, M•c is the wall curvature correction factor, and MB is the back

surface correction factor. The values of M[/IandF, and MB are presented in

References [in] Lnd [58] , respectively. As in Reference [36] , it is

assumed that for a given number of applied load cycles, the extension of the

quartt-r-elliptical crack border is controlled by the stress intensity factors

at two points; namely, the intersections of the crack periphery with both the

hole wall and plate surface (i.e., KA and KC). In general, the stress
A C

int-nsitv factors at these two locations are different, resulting in differ-

'nt crack growth rates. Terefoe, the new flaw shape aspect ratio after

.,ac'h crack growth increment differs from the preceding one. Thle new flaw

shapt .ASpVtC ratLLo is comPputed using the new crack lengths at both the hole

* wall and plate- .surface. All the correction factors have been reduced to

s~mpIe eqttationt for locations A and C, anti the two-parameter corner crack

tr r -es Intensity ¢a'ictot formulas are summarized in Figure 3-38.

Il teterence fUtt', the above process was repeated unril the crack lenglth

Salong the h-,le wall was equal to the pdate thickness. At that time, the

craek was assumed to be a through-the-thickness crack with length c. This

assumption was baSed upon the experimental observation that after the

crack penetrates the back surtace and the cyclic load applicatio, continues,

the back surface crack length increases much taster than that ot the front

surface until the front ol the through-the-thickness crack becomes stable.
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"This transitional crack growth assumpLion is ver> reasonable for a crack

at a fastener hole, since, at the time the crack grows through the thickness,

the remaining net section is usually much larger than the surface crack

length. However, for an atta ;tmenL lug. when a part-through crack grows

through the thickness, the remaining net section is usually small in

comparison to the surface crack size. Therefore, a proper transitional crack

growth criterion is needed for the transition period from the time the crack

penetrates the back surface to the time the crack lengths are essentially

equal on the front and back surfaces.

Figure 3-39 shows the transitional crack geometry, in which cF and

CB are crack lengths on the front and back surfaces, respectively.

Collipriest and Ehret [371 proposed a strasa-intensity magnification factor

for the crack tip at the back surfa-ce of a surface crack as

0 a t 1 for cB >0 (37)

C When the back-side cract. length equals the front-side crack length, the

magnification is unity and the through crack has achieved a uniform front.

This tactor will be used to estimate the stress-intensity factor at the back

surtace ot the transitional crack, i.e.0
c i

K Ht T (RT

The stresii-intensity [aetor at the tront surtace will be calculated

u.nitir tEqtiuttioti (CS) and 4t% im•gitnry crack length ,long the hole wall direc-

tion, 4' , i.e.

CF Ni cF

0" % In F P)T(9A o(0

An imag.inatry crack latgc: 4' can be determitted by titting an ellip-

= tical etquat iotk through -points C and it, ay
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a' B - (40)
cF

b"F

When the back-side crack length, CB, approaches that of the front side (i.e.

B"C" as shown in Figure 3-38), the factor c /a' becomes very small and the
F

corresponding Mj/4J ratio approaches unity. After that, the transitional

crack becomes a through-the-thickness crack with a uniform front, i.e.

K ~K = 9V'iI3(i- (41)
B = C 0 T R i

Equations (34) and (35) were used to compute the stress-intensity

factors at tne intersections of the crack periphery and the hole wall and

plate surfaces. The 2-D finite element method solution results from Table 3-3

were used for the basic thzoug:-the-thickness crack solution, K(c/R i). The

results are shown in Figures 3-40 through 3-42 for R0/Ri ratios of 1.50,

* 2.25 and 3.0, respectively. In each plot, the flaw shape aspect ratio a/c

was assumed as constant. It should be noted that the computed part-through

ci-ck stress-intensity factors are normalized by orbr \/IýT . These solutions

correspond to corner crack solutions for a_<B. Figure 3-43 presents the

norm3lized streŽss-intensity factors at the lug surface having a constant

a/c ratio of 1.33 and a Ro /Ri ratio ranging from 1.5 to 3.0. In this

fig-tre, the solutions are presented even after the crack breaks through the

back side, i.e. a >B. Corresponding normalized stress-intensity factors

4 computed using the one-parameter compounding method are also shown in the

figure for comparison.

3.3 THREE-DIMENSIONAL CRACKED FINITE ELEMENT METHOD

*Q Nunerical methods such as the slicing technique [383, the conventional

three-dimensional (3-U) finite element method [39 ], the boundary integral

equation approach [40], and the 3-0 alternating technique [41] have been

asd to atialyzc corner-crack problems. To accurately depict the extreme

stress gradient existing in the vicinity of a crack tip, the necessary com-

puter effort in each case is considerable. In an attempt to minimize the

econotic problem of the conventional e:pproach and to extract the stress-

intensity factors directly, a 3-dimensional cracked finite element was used

which is capable of characterlzing the crack-tip stres'i singularity intern-

ally. The procedure used in the development of the 3 D cracked element is

described it keterence [42] and summa'rized 3s follows.
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Two types of 20-node 3-D cracked elements, as shown in Figure 3-44,

* were developed using i hybrid displacement finite element procedure. The

variational principle which governs the assumed displacement hybrid finite

element model is the stationary condition of a modified total potential

energy functional with a relaxed requirement of interelement boundary dis-

placement continuity, a priori. This variational principle is a three-field

variable principle. The three field variables are the element interior dis-

placements, element boundary displacements, and the Lagrange multipliers.

The Lagrange multipliers are physically the interelement boundary tractions

and are assumed to match the independently assumed element interior and

boundary displacements at the interelement boundary. Three-dimensional

asymptotic solutions for displacements (\--- type) and stresses(l/Vr---

type) near the crack front are embedded in this procedure. Apart from satis-

fying relevant field !quations, the variational principle also enforces the

conditions of displac-ment continuity and traction reciprocity at the inter-

element boundary a posteriori, assuring the convergence of the finite ele-

ment procedure. The procedure is capable of analyzing mixed mode fracture

problems (Modes I, 11 and 1II), and the three stress-intensity factors at

various locations along the crack front are treated as unknowns along with

the generalized nodal displacements of the structure. The final set of

algebraic equations governing the global nodal displacements and the three

stress-intensity factors at various locations along the crack front can be

written as follows:

[K1 ] j.1 . [(KT IK} IQ (42)

1 2] jq*ý •K 3% jK.1 IQ{21 (43)

IWhere •q*- are the structure's global nodal displacements, jK*j are

the mixed mode stress-inter.. - `.. lors at various locations along the crack

front, [K] [K'!K] a1d [K 3 ] are the corresponding stiffness matrices (super-

script T represents the transpose), and JQI} and are the corresponding

nodal forces. IE is evident from Equations (42) and (43) that the solution

for stress-intensity factors can be obtained directly from the finite ele-

ment solution procedure. This eliminates additiontal post-processing of dis-

placement or stress solutions to obtain the stress-intensity factors through

methods such as the crack opening displacement method, n•dal force method,

etc. A detailed descript ion of the hybrid displacement procedure was doce4-

m etted in Reference L421.
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S

The accuracy and convergence of the three-dimensional hybrid displace-

ment finite element procedure have been tested and verified through the solu-

tion of several complex Cracture problems of interest in aerospace structural

components, nuclear pressure vessels and components, and solid rocket motor

grain applications [43-45]. Raju and Newman [461, using Tracey's (391 wedge

shaped distorted isoparametric crack elements, made a convergence study for

the solution of semielliptical surface flaws in thin plates. A similar con-

vergence study was also made using the present three-dimensional hybrid

finite element procedure in Reference [44]. As discussed in Reference (44], the

present solution with 4555 degrees of freedom has excellent agreement with that

of Raju and Newman for their highest degrees of freedom, 6867.

The three-dimensional cracked element was used to compute the stress-

intensity factors for single quarter-elliptical corner cracks at straight

lugs. A total of eight problems of corner cracks in attachment lugs with

various outer-to-inner radius ratios, crack aspect ratios, and crack depth-

* to-lug thickness ratios were considered for the present analysis. The geoam-

etry of an attachment lug with a corner crack is given in Figure 3-45(a), and

the various parameters for the eight problems considered are defined in

Table 3-12. The bearing pressure at the lug hole wall was assumed to be

uniform and acts only on the right half of the hole as shown in Figure 3-45(a).

This assumption of uniform bearing pressure over the right half of the lug

hole wall was made due to the complexity involved in the generation of equiv-

alent nodal forces c esponding to an actual pin-lug contact bearing pres-

sure distribution a three-dimensional case. Consequertly, the solutions

by the two-dimensicaal Green's function method generated for comparison

purposes also correspond to the same bearing pressure. Also, the original

Greca's functions were used in the computation of two-dimensional solutions.

The assumption of saue bearing pressure in both cases is important, because

tht stress-intcnsitv factor solutions vary significantly depending upon thie

bearing pressure distribution, namely, uniform, cosine and actual pin-lug

presnure distributions.

A typical finite element breakdown, nunber of elements and total number

of degrees of freedom for the present analysis are presented in Figure 3-45 (b).

In Figures 1-46 through 3-50, solutions of stress-intensity factor variations

along the crack front by both two- and three-dimensional procedures are pre-

sented tor problem nutmbers I and 2, 3, 4 and 5, 6 and 7, and 8, respectively.
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TABLE 3-12. CORNER CRACK PROBLEMS ANALYZED
BY THREE-DIMENSIONAL CRACKED
FINITE ELEMENT PROCEDURE

PROBLEM R /R

NUBE t a/c a/BNUMBER

1 1.50 1.0 0.50

2 1.50 1.5 0.50

3 2.25 1.0 0.1667

4 2.25 1.0 0.25

5 2.25 1.5 0.25

6 2.25 1.0 0.50

7 2.25 1.5 0.50

8 2.25 1.5 0.75

• 94

S-? "" "" . ?C' "- . " '



R
o 1.5

R.

3.0 0 .

g1.5

C R

* - a
R..

2.0 -1.0

BC

_ / , -- \

-- 3-D

---- 2-D

0 30 60 90

ELLIPTICAL ANGLE, a

1~trt -40,. 4ortiaiItet! s-tress ttirew~itry F'a'tors tur C:orner Crack&

at a Straight AttaemenE t.ug Htaving a 9 /R Ratlo of 1.5

and af4/h Ratio of 0.0

4

6I

0



i "4

4%,-

1.0

L.

R
\ 0.5 R

-2 = 2.25R.
S-'-"- 3-D

0. 1667-- 
- 2-D

"" ~B

0.0I I I
" 0 30 60 90

ELLIPTICAL ANGLE, a

?l•.re ~.1-4. 'lorialiIed stress Intenslty Factors for (:orner (Cracks

at a Straight Attachment Lug Having a IK /K i Ratl o of 2.25
and an a/B atlio of 0.1667

---

S

Si

|-



4

-* .o1.5

1.-

R-

05 - '= 1. 25

0.5 R-3-D

2- D

-•=0.25---2D

0 30 60 90

ELLIPTICAL ANGLE, C1

* Figure 3-48. Normalized Stress intensity Factors for Corner Cracks
at a Straight Attachment Lug Ravin$ a R /R Ratio of 2.25
and an a/B Ratio of 0.25

i.' •:-7

4,

. . .



""3-D
~~-- --- 2-D.

1. 00

1.. 1.0

*• 0.3 R
- __02.25

I

""0 30 60 90
S~ELLIPTICAL ANGLE, a

Si'[~~ :•~rt, "1-4,. "ior~t|taze! Sirresx tigccrtslty '•actrors for Corner (Crac1ks

S~at a Straight Attachmnt L~ug Having a Io 1i IRatio •i 2.25
Ot

0.5 R

* R.

a 0 .5

0 30 60 90-



R
0

- = 2.25
R.
a

0.75- 0.

-3-D
• ! ----- 2-D

0 30 60 90
ELLIPTICAL ANGLE, cc

Figure 3-50. Normalized Stress Intensity Factors for Corner Cracks
at a Straight Attachment Lug Having a R /R Ratio of 2.25

and an a/B Ratio of 0.75 0

99

. ..



The stress-intensity factor solutions are normalized by the exact solution

"of a through-the-thickness crack of length c in an infinite plate subjected

to a crack pressure of obr" Elliptical angles (a) of 00 and 900 refer

to the intersections of the crack front with the hole wall and lug surface,

respectively.

A comparison of the results in Figures 3-46 through 3-50 reveals that tile

two solution procedures agree well at I = 00, but significant differences

exist near a = 900. For lugs with an outer-to-inner radius ratio of 1.5,

the maximum difference at I = 900 is about 42 percent and the difference

decreases as the aspect ratio of the crack (a/c) increases. For lugs with
0.

outer-to-inner radius ratio of 2.25, the maximum difference at C=90 is

about 26 percent and the difference decreases as the aspect ratio of the

crack (a/c) and the crack depth-to-thickness ratio (a/B) increase. The overall

behavior of the differences in the solutions is that they decrease as the

outer-to-inner radius ratio, crack aspect ratio and crack depth-to-thickness

ratio increase. Also, the angle at which the normalized stress-intensity

factor is minimum is lower for the two-dimensional procedure in almost all

of te problems. Thus, from these results, the two-dimensional procedure

seems to be consistently overestimating the stress-intensity factor solutions

excý2pt for elliptical angles close to 00.

T.e one-parameter compounding, two-parameter weight ftunction and the

three-dimensional cracked finite element solutions are compared in terms of

corner crack correction factors at the lug surface in Figure 3-51. The corner

crack corre,:tion factors are obtained by normalizing Kc with the stress inten-

sity factor (by weigb, function method) of a through-the-thickness crack of

length c and are expressed as a function of a/B.

4
"4. ELASTOPLASTIC ANALYSIS

Several analytical methods of varying complexities have been developed

and discussed in previous sections for through-the-thickness and corner

cracks in straight attachment lugs. These analyses are basically for

"linear fracture mechanics problems. However, attachment lugs may

undergo substantial plastic yielding around the lug hole, depending on the

specific application and/or design. For example, the concepts of cold-

* working of the hole or installation of an interference-fit bushing prior to

pin fitting have been extensively used in actual aircraft attachment lug

6 •100
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design practices to improve the crack initiation life. These concepts are

basically used to introduce fatigue-improving residual stresses around the

hole of the lug. The lugs may also undergo plastic yielding due to the

*" application of high pin loads. It is important to develop analytical pro-

cedures for analyzing such problems.

The analytical procedure is similar to that developed and verified for

through-the-thickness cracks emanating from interference-fit and cold-worked

fastener holes in infinite plates, under a previous Air Force contract

(Reference [36]). The method involves an initial elasto-plastic stress analysis

of attachment lugs to obtain the stress distribution on the prospective crack

surface. These stresses are then used in conjunction with the Green's function

to calculate the stress intensity factors for cracks emanating from lug holes.

The Green's function developed for linear problems is also used for the

*! elasto-plastic case.

The elasto-plastic stress analysis has been carried out for two mate-

rials, 4340 steel and 7075-T651 aluminum, which are being used for testing

in the present contract work. These materials have been characterized and

the nonlinear elasto-plastic stress-strain relationships were approximated

by trilinear representation and are given in Figure 3-52. The unloading

*. moduli have been assumed to be the same as the initial elastic moduli for

both of the materials. The analysis was performed for lugs with outer-to-

inner radius ratios, R0/Ri, of 1.50, 2.25, and 3.00 and a constant lug inner

radius of 0.75 inch. Far-field maximum stresses, oo, of 35 and 15 ksi were

selected for steel and aluminum lugs, respectively. Isotropic hardening

with the von Mises yield criterion was used in the elasto-plastic analysis._I
Steel pins were used in all cases, and it was also assumed that the pin did

not yield.

The finite-element method was again used for the elasto-plastic

* stress analysis of attachment lugs. The finite element breakdown and

the use of spring elements with high stiffness to simulate the pin-

lug contact surface were similar to those in the linear stress analysis.

The model was loaded by a single concentrated force at the center of the pin.

*@ In the nonlinear analysis, a loading was first applied to reach the yield

point, followed by incremental loadings to reach the maximtu tar-field

stresses listed above. The loadings were then reduced to give stress levels

corresponding to far-field stress ratios, R, of 0.5 and 0.1.
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* .. Tn t:he plastic region, the following two convergence criteria were used

in the analysis. A tolerance criterion of AEit /MLE.1 0.1 was used in

the analysis, where AE I, AEL.I are the energy changes for the iteration

and the load increment, respectively. Regardless of the above tolerance

" criterion, the analysis was iterated at least twice for each load incre-

ment. In all the solutions presented here, the maximum value of i E
eit

AEI..I was less than 0.035.

The unflawed stress distribution along the prospective crack surface,
0

90 away from the load li.,e, obtained from the elasto-plastic finite element
"analysis for the far field stress levels given before are presented in

" . Figures 3-53 through 3-55 for steel lugs and Figures 3-56 through 3-58 for

Saltuninum lugs. These results are given in increasing order of R o/Ri ratios

* of 1.50, 2.25 and 3.00.

For a steel lug with R/R of 1.50, the stresses (q corresponding

to maximum far-field stress of 35 ksi and the stresses (min, R - 0.5 and

a min' R = 0.1) corresponding to minimum far-field stress for stress ratios

of 0.5 and 0.1, respectively, are given in Figure 3-53. From these stresses,

the difference between maximum and minimum stresses for stress ratios of 0.5

and 0.1 A 5 and R=0.1' respectively, can be obtained and are alsc

included in tae figure. At the maximum load, about 20 percent of the lug
* ligament has yielded. The effects of plastic yielding of the lug can also

*"be seen in the distributions of Umin, R=0.5 and amin, R=0.1" While

*unloading, due to plastic yielding, the stresses near the lug hole decrease

at a higher rate than the rest of the ligament and become negative at the

minimum stress corresponding to R- 0.1. If the loading was completely

removed, significant negative residual stresses would exist near the lug

q hole. In calculations of crack growth any compressive minimum stresses near

the lug hole are neglected dte to crack closure, and AVR0.O is a&sumed

not to exceed VM . However, for illustration purposes, the actual

difference in stresses near tht lug hole is indicated in Figure 3-53 by a

_ •dotted line. Corresponding solutions for an aluminum lug with the same

"geeuta-; = prusentcd in Fiiurý 3-56, aad the reselts are quali.atively

Similar analytical solutions for lugs with an k /Rt ratio of 2.2,J are

S)given in Figures 3-54 and 3-57 for steel and alminum materials, respec-

tively. In this case. tor both the materials, the lugs yield only slightly;
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that is, about 5 percent of the lug ligament. Also, for R-0.1, the minimum

stress near the lug hole does not become negative for this lug configuration.

Thus, Ar_ and ARO presented are the actual differences in the

stresses. Results for steel and aluminum lugs with a Ro/Ri value of 3.00 are

presented in Figures 3-55 and 3-58, respectively. In this case, the lugs

barely yield, and very small plastic strains were calculated by the elasto-

plastic analysis.

The above stress ranges, computed from the elasto-plastic analysis, are

then integrated with the Green's function to compute the stress intensity

factor-ý for through-the-thickness cracks in lugs that are loaded above vield.

The stress intensity factors can be calculated using the Green's func-

tion method by the following equation:

10c0 = ar V-1r GfEk Qfd (44)
0

The stress intensity factor range for through-the-thickness cracks can

be computed from the above equation by either inputting the maximum and

minimum stresses and subtracting the values, or more directly, by using the

stress range. However, in the cases where the stresses corresponding to

"minimum load become negative, the stress range should not be used. Rather

the direct input of maximum and minimum stresses should be used and care

must be exercised to neglect the negative stress intensity factors corre-

sponding to minimum load while computing the ranges. The computed values of

stress intensity factor ranges for steel and aluminum lugs are presented in

"Figures 3-59 and 3-60, respectively. The results are given for R o/Ri ratios

of 1.50, 2.25 and 3.00 and far-field stress ratios of 0.5 and 0.1 Since this

was a nonlineax analysis, the far-field stress ratio (ratio of minimum to

"maximum far-field stress) differs from the crack-tip stress ratio (ratio of

minimum to maximum stress intensity factor). Furthermore, because of the

nonlinearity, no effort was made to normalLe the stress intensity factor

"ranges in Figures 3-59 and 3-60. However, the crack length in the presenta-

tion has been normalized by the net ligament of each lug.

For normalized crack lengths less than about 0.35, the stress intensity

factor ranges are lower for an R o/R ratio of 1.50 and higher for increasing

•. . . .. .. .. . ' . . .: ..
,...-.,.., . . .- 4,4..-4,4 .. .
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R /R1 ratios. For normalized crack lengths above 0.35, the trend changes to
o 1

higher stress intensity factor ranges for lower Ro/R. ratios. However,

expressed in terms of unnormalized physical crack length, c, the stress

intensitv factor for any given crack length is always higher for a lower

1R /R, ratio.
0 1

*.To assess and to have a feel for the effects of plastic yielding by

comparing with linear analysis, the stress intensity factor ranges are nor-

malized by Aorr-•, where A&r is the corresponding far-field stress range.

These normalized values given in Table 3-13 have limited significance in

"the sense that these values are applicable to the specific material and load-

* ing condition. The values can be directly compared with the normalized

* stress intensity factor ranges given in Table 3-3 (applicable for R=O.l and

R=0.5), which correspond to linear analysis, to evaluate the effect of plas-

ticity. Table 3-3 can be assumed to be applicable for both materials,

I• since the differences were less than 3 percent.

Comparison of these two tables indicates that the normalized values of A K

* for the elasto-plastic analysis are lower for smaller c/(R -Ri) ratios and become

higher as the crack grows through the lug ligament. This is because of the

stress redistribution in the lug due to yielding. In the yield zone and its

neighborhood, the stresses will be lower when compared with the elastic

stresses. Away from the plastic zone, the stresses will be higher than -elastic

stresses, to satisfy the equilibrium. The above behavior is true, in general;

* however, for an R /R. ratio of 1.50 and a stress ratio of 0.1, the nonlinear

values are consistently lower than the linear values for almost all

c/(Ro-R.) values. The reason for this behavioral change can be explained

as follows. For this particular lug configuration and stress ratio, there

is more plastic yielding as well as compressive residual stresses near the

lug hole at the minimum load. These negative stresses are truncated in the

stress intensity computation. Also, the net ligament length is the smallest.

"For these two reasons, i.e., truncation of negative stresses and smaller

ligament size, the normalized values of stress intensity factor range never

become higher than those of the linear analysis. Also, note that due to

•- plastic yielding while loading and subsequent linear unloading, the normalized

values of R= 0.5 for lower c/kR /Ri) ratios are greater than the corresponding

values of R= ,.l and closer to linear elastic values given in Table 3-3.
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The elasto-plastic method can also be used to calculate the stress inten-

sity factor solutions for corner cracks emanating from attachment lugs that

ai'. subjected to loadings above yield. The above through-the-thickless solu-

tion -R Pe modified with front-free surface, curvature correction, etc. for

corner crack problems, as in Equations (34) and (35) of subsection 3.
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SECTION IV

STRESS INTENSITY FACTORS FOR TAPERED ATTACHMENT LUGS

Tapered attachment lugs have been uw:ed frequently in aircraft struc-

tural fittings to provide strength against off-axis loading. To

determine the critical location and direction where a fatigue crack may

initiate and subsequently grow, it is necessary to determine the stress dis-

tribution of the unflawed lug and the stress intensity factors of the cracked

lug. This section describes the development of stress distribution and

stress intensity factors for tapered attachment lugs subjected to symmetric,

off-axis and transverse loadings.

I. STRESS ANALYSIS

Because of the complexity of the lug geometry and off-axis loading,

.4 the finite element method was used to determine the tangential stress dis-

tributions along the edge of the hole in the unflawed lug. This analysis

was conducted for a pin load applied at 00, 900, 1350, 1800, 2700, and 3150

measured in the clockwise direction from the axis of the lug. Figure 4-I

C depicts the geometry and typical two-dimensional finite element model used

in the stress analysis of the unflawed lug. The angle between the two edge

surfaces of the tapered head, 0, is 45 degrees. The finite element model

shown in Figure 4-1 consists of 429 nodes, 72 triangular elements, 348 quad-

rilateral elements, 28 spring elements, and a total of 850 degrees of free-

dom. A concentrated force was applied at the center of the pin to simulate

pin loading and was reacted att the base of the lug. The analysis was

carried out to determine the stresses in the 1uh and the pin-bearing pres-

sure distributions at the pin-lug contact area for the six loading direc-

tions meritioned above. Three outer-to-inner radius ratios of the tapered

head, i.e., P /IR 1.50, 2.25 and 3.00, were evaluated. in all cases olS0 1

the analyw(s, the rigidity or the pin was assumed to be three times the

rigidity of the lug, which simulates an aluminutm lug loaded by a steel pin.

For the conventional t ixtite-element atnalysis using cotxstsnt straint

elements, the values of stress and strain obtained for a given eletaet

werv 4ssigacd to trhc Crntroid loCAtion Uf that clement. to detCrMino

the stress at the edge ot the hole, the stresses at the centroids of a

111
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series of elements located in the same radial direction were used to extrap-

olate to the edge location. This procedure was used to determine the tan-

gential stresses along the edge of the hole of tapered lugs having R0 /Ri

ratios of 1.50, 2.25 and 3.00. The results are shown in Figures, 4-2, 4-3,

and 4-4 for pin loadings applied in three principal directions, i.e., 00,

-450 (3150), and -900 (2700), respectively. In each case, the tangential

stresses were normalized with the average pin bearing pressure, 0 br' which

is defined as P/(2RiB), where B is the thickness of the lug.ig"

As can be seen from these figures, for each loading direction, there

are two local maximum tangential stresses located at each side of the load-

ing direction. The locations of these maximum stresses depend upon the

loading direction and R /R ratio. For a pin loading applied in the axial
o i

direction of the lug, as shown in Figure 4-2, the maximum stress locations

are found at about +85 to +900 away from the loading direction. The maximum
* stress locations do not change significantly with the change of the Ro/Ri

ratio. When the pin loading is applied in the -45° direction (see Figure

4-3), for Ro/Ri = 1.50, the absolute maximum stress occurs at about 650
00

measured from the axis of the lug (or 1100 away from the load direction)

with the other local maximum stress located about 1800 from the first. When

the R /R ratio increases, the locations of the maximum stresses changeo i
only slightly. However, the absolute maximum stress location switches from

the head side of the lug to the base side of the lug. When the pin loading

is applied in the direction perpendicular to the axis of the lug (see Figure

4-4), for all k0/Ri ratios, the maximum stress occurs at the location in

the base of the lug at a 0 value of about 2000 to 2100. Figure 4-5 summa-

rites the locations of the local maximum tangential stresses at the edge of

* the hole for each loading direction. These are the most critical locations,

where one would anticipate that a fatigue crack would initiate. For each

lug geometry and loading condition, Numbers I and 2 shown in Figure 4-5

indicate the probable order of crack initiation. They are chosen based upon

* the relative magnitude of the two computed local maximum stresses. Stress
distributions along the x-axis for tapered lugs with R0/At ranging from 1.5 to

1.0 subjected to symmetric loading are presented in Figure 4-6 and Table 4-1.

Larsson (47. 481 conducted fatigue testing of axially and transversely

loaded aluminum lugs having a R /Ri ratio of 2.2. lie observed and tabu-

lated the locations of fretting and crack initiation for three different lug
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6

configurations. His results of crack initiation locations are summarized in

'" Figures 4-7 and 4-8 for a pin loading applied in the 0 and 90 directions,

respectively. As oeen from these figures, the current predicted fatigue

critical locations as well as the possible sequenre of crack initta-

tinn agree well with these experimental data. These predicted critical

locations will be used in the modeling of the cracked lugs in the subsequent

fracture analysis.

The fatigue critical area of an attachment lug for a given loading di-

rection is not necessarily subjected to compression when the loading direc-

tion is reversed. Thus, for some load orientations, the reversed fatigue

loading might have a significant effect on crack growth behavior. Figures

4-9 through 4-Il show the rangential stress distributions along the edge of

the hole for a pin loading applied in the reversed direction of the three

primary load orientations presented in Figures 4-2 through 4-4,

* respectively. As seen from the figures, In most cases, "he reversed

loadinv stretcheis the zcritical area in tension, but thc magnitude is

reduced. NotL, that the result in F. ,ure 4-Il is essentiaIly the same

as that in Figure 4-4 except for the definition of the angle 0 . Plots of

P the stress co,1ceittration factors at the edge of the hole in logarithmic

scales, as shown in Figure 4-t2 for synmmetrically loaded tapered attachment

lugs,reveal that a simple empirical formula can be derived and the relation-

ship is given by the equation

"*I*. -(0.675 - )
O'max 10 01000

K = (2.75- l--) (•. - 1) (45)

where 00 is the taper angle oe the attacthment lug in degrees. Note that

for straight lugs ( 03- 00) the above equation reduces to that given in

"Figure '-5.

The stress conc:entration factors were obtained by normalizing the peak

Sta-ngential stresses wich the average pin bearing pressure, (,br* The equa-

tion of the Logarithmic straight lines shown iti Figure 4-12 compares with

the finite elettent solution within 0.8 percent for tapered lugs. The values

cotputed by the above equation and the itt ite element method are also listed

in tabtilar torn in Figure 4-1? tor cotparisosm. This simple empirical equa-

tion may be used for interpolating for taper angles less than 4'0' ot extrap-

oa4tinh for 0Roi values outside the range o! 1.5 and 3.0. The values of
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the stress concentration factors presented in Figure 4-12 correspond t:. the

+90 locations. The actual maximum tangential stress location is be-

tween +85° and 4+900. From a knowledge of the stress distributions, it is

anticipated that there will be no appreciable difference in the solutions.

Also, in the fracture analysis of tapered lugs subjected to a pin loading

in the axial direction, the crack surface will be assumed to be in the plane

perpendicular to the loading direction. lHowpver, for off-axis loadings of
+450 and -+90 , the crack surface will be assumed to be in the critical loca-

tion as predicted by the strcz& analysis.

The computed pin bearing pressure distributions along the contact sur-

faces with no cracks present are presented in Figures 4-13 through 4-15 for

4 pin loadings applied in the three primary directions, i.e., 0°, -45°, and

900, respectively. Similar resuLts obtained tor the reversed loadings of

1800 and 1350 are presented in Figures 4-16 and 4-t7, respectively. For the

reversed loading of 900, the contact pressure can he obtained from Figure

4-15 by redefining the angle 0 as previously discussed.

2. STRESS INTEINSITY "V\(:TOR :ANALYSIS

Based on the stress analysis of unfLawed tapered attachment lugs, the

most critical locations were selected for the fracture analysis to obtain

the stress intensity factors for various crack lengths. The special high-

order crack tip singularity element [8] was again used in the present analy-

sis to calculate the stress intensity factors. In the analysis, it is

assumed that, for a given tapered lug subjected to a specific direction of

pin loading, the crack will initiate from the maximum tangential stress

location at the hole and propagate radially. Figure 4-18 shows a typical

finite element model which was used for a single through-the-thickness crack

emanating from a tapered attachlnent lug subjected to a pin-loading applied

in the 00 and 1800 directions. The crack surface is assumed to be in the

plane perpendicular to the loading direction. The finite element breakdown

consists ot 166 nodes, 1¶0 triangular elements, 228 quadrilateral elements,

32 spring elements, I crack-tip element and a total of 724 degrees of free-

dow. The computed norttalized opening mode stress intensity factors, as a

function Of normatlied crack leng:th, tor single through-the-thickness cracks

in tapered attachment lugs having 140/9 i ratios ranging Ircon. 1.S

to 1.0 are presented in Figure 4-19 and Table 4-2. hlie nortmalizeid stress
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Figure 4-18. Finite Element Modef for a Cracked Tapered Lug
Subjected to a Pin Loading Applied in

0 0

00 and 180~ Directions
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intensity factor values at the lug hole, i.e., c/Ri 0 , were obtained by

multiplying the concentration factors determined from the unflawed stress

analysis by 1.12, which was derived by Gross et al [211 for a straight edge

crack in a large plate subjected to remote tension. The trends of the above

tapered lug solutions are very similar to those obtained for straight lugs.

Similar solutions of normalized stress intensity factors as a function of

normalized crack length for tapefed attachment lugs subjected to pin load-

ings applied in the 1800 direction are presented in Figure 4-20.

"The analysis was then extended to tapered attachment lugs subjected to

off-axis loadings of -45 , 1350, -90° and 900. A R /Ri ratio of 2.25 was

considered for the off-axis loading fracture analysis. Figure 4-21 shows

the finite element model used for analyzing a single through-the-thickness

crack emanating from a tapered lug subjected to a pin loading applied in
-450 and its reversed (135 ) direction. The model contains 401 nodes, 224

triangular elements, 218 quadrilateral elements, 34 spring elements, I crack-

tip element and a total of 794 degrees of freedom. Note that although

there are two critical locations modeled, 580 and 227u measured from

the axis of the lug, only one crack was analyzed at a time. The computed

normalized stress intensity factors are shown in Figure 4-22 as a function of

the normalized crack length. This figure shows that wh2n the crack length

is small, say cR. < 0.15, the stress intensity factor for a crack located
i

closer to the base of the lug is higher than the one located at the h<,ad side

of the lug. When the crack length increases (c/R. > 0.15), the stress inten-

sity factor for a crack located at the head side becomes larger than the one

lccated at the opposite side of the hole. The difference between the two

computed K-values increases as the crack length increases. For the case when

the direction of the applied pin l3ading is reversed, the stress intensity
factors are also computed and included in the figure for a crack located at

the head side of the lug. The surfaces of a crack located closer to the base

of the lug are completely closed during the reversed loading. The computed

K-values corresponding to the reversed loading are much smaller than the

corresponding ones obtained under the primary tensile loading. In the above

analysis, only one crack was assumed to exist at a time. However, in reality,

both cracks may exist and grow at the same time. In such a case, the influ-

ence of one crack on the stress intensity factor of the other crack may be

significant. This can Le accounted for by developing a matrix of stress
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intensity factor solutions for various crack lengths of both cracks. This

matrix of solutions may then be used to accurately estimate the stress in-

tensiLy factor for either crack. However, such an effort is not made in the

present analysis.

A similar finite element model to the one shown in Figure 4-21 was used

for a tapered lug subjected to a pin-loading applied in the +900 directions.

Two critical locations, 43 and 205 measured from the axis of the lug, were

determined from the results of the stress analysis of an unflawed tapered

00
'•". lug subjected to a pin loading applied in the -90° direction. Similar to

the -450 loading case, only one crack was analyzed at a time, though two

critical locations were modeled. The computed normalized stress intensity

factors are shown in Figure 4-23 as a function of the normalized crack length.

I1ie figure shows that when the crack length is smaller than 0.85 Rf,

the stress intensity factor for a crack located closer to the base of the lug

is higher than the one located at the head side of the lug. When the crack

0 length increases (c/Ri > 0.85), the stress intensity factor for a crack

located at the head side becomes larger than the one located at the opposite

side of the hole. For the case when the direction of the applied pin loading

is reversed, the stress intensity factors are also computed and included in

S the figure for a crack located at the head side of the lug. The surfaces of

a crack located closer to the base of the lug are completely closed during

the reversed loading. The K-values corresponding to the reversed loading are

smaller than the corresponding ones obtained under primary tensile loading.

However, these magnitudes are significantly larger than the corresponding

ones obtained for a case where the pin loading was applied in the 1350 direc-

t i oni.

Havd on tht- currvnt unflawed stress and stress intensity factor analysis,

onr may conclude that, among the principal pin loading directions of 0, -45O

and-9) , the loading of -45 is the most severe loading case from the point of

vi'-w •f fatigue, crack initiation and fatigue crack propagation. Also, when a

• tapered l, having a R /R ratio of 2.25 is subjected to cyclic fatigue pin

loadniag e - 4 and -90" di rec'tions, a crack will probably initiate at the

t-riticAI locat ion closser to t he basr of the lug first. When this crack

proqagar e- * a .;-cotd cr-ack will inltitiLte at the head side of the lug. Evetitu-

* 4 allv, the growth of theo bas-side crack will slow dowti while the growth rate of

tie- head-ide'- rack will int-rvease and e-xceed that of the ba-se-sido crack•. T1h-

S Ib46
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lug will finally fail from the head side. Failure modes experimentally

studied by Larsson [46] for tapered lugs loaded in the -900 direction are

very similar to those discussed above.
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SECTION V

CRACK GROWTH ANALYSIS METHOD

Linear elastic fracture mechanics methodology is discussed in this

" " section to predict crack growth in damaged attachment lugs. An accurate and

efficient prediction of crack growth from an initial crack length to a criti-

cal or final crack length,whea subjected to a prescribed load history, de-

pends on a damage accumulation package containing the following four basic

elements:

o Applied load spectrum

"* o Stress intensity factor solution

o Baseline crack growth rate data or crack growth rate equation

o Spectrum load 4nteraction model.

The applied load spectrum is the loading sequence or history the attach-

ment lug is subjected to for which the crack growth prediction is to be made,

and is therefore basically an input for the problem.

It is generally accepted that the stress intensity factor controls the

rate of propagation of a fatigue crack in structural components. Any cracked

structure can be expected to respond in a predictable manner to a given

applied load spectrum if its associated stress intensity factor solution is

available. The development of such stress intensity factor solutions was pre-

sented in the previous two sections for straight and tapered attachment lugs

4 for various configuration, design and loading complexities.

The response of the crack it usually given in the form of constant

amplitude fatigue crack propagation rate, da/dN, as a function of stress

intvnsitv factor range, AK. Thv.se baseline material pronertv data are

-obtalned exnerimental v anti cap he extiresse(I in cither tabular or ecouation

formt, i tý. ,

da t (AK ....... ) (6)

Paris' [491, Forman's [5011 and Walker's [51] eq.-ations are scune of the

typical representative crack grnwth-rate equations which will be discussed

in this section.
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The normal crack growth rate under constant amplitude loading changes

if the load cycle is preceded by a different amplitude load cycle. As ex-

amples, a tensile overload causes permanent plastic deformation at the crack

tip which in turn delays the crack growth at subsequent low-load cycles,

while the compressive underload may accelerate the normal crack growth.

To account for such spectrum load-interaction effects, several crack-

growth retardation models have been proposed. Models such as Wheeler £52],

Willenborg [53], Generalized Willenborg [54] and Hsu [55] will be discussed

in this section.

1. CRACK GROWTH RATE EQUATIONS

A large and growing volume of crack growth data are available. Most of the

data are expressed in terms of AK versus da/dN. In this relationship,

there is a threshold value of K , say Kth, below which a flawed structure

can be cycled without measurable crack extension. At the other extreme is

K , called fracture toughness, a value of K at which a flaw will propa-C

gate unstably. Therefore, fatigue crack growth must occur in the range

Kth to K . All crack growth rate data available for establishing the
th c

da/dN versuG AK relationship fall within this range. Normally, data

show some experimental scatter, and the least-square mean line representa-

tion of all test data is used to establish the AK versus da/dN relation-

ship.

Several methods of using the mean data to describe crack growth rates

have been proposed. Of these methods, tt.ree well established

crack propagation equations are used most. They are Proposed

by Paris et al [491, Forman et al [50], and Walker [511. Paris' equation is

limited to cases where a constant stress ratio, R, is applied. Forman and

Walker's equations are more general and applicable to cases where variable

loads exist in the load spectrum.

Accuracy of the predicted crack growth life, using any crack growth

equation, depends upon accurate values of da/dN versur AK and correct

stress intensity factor values for a particular geometry.

1.1 Paris' Equation

The crack growth rate equation proposed by Paris, et al. is of the

following form:

IS0



n
da/dN c p (47)

p

where:

da/dN rate of crack growth (inch/cycle)

c and n are constants for a particular stress ratio
Sp p

AK stress intensity factor range (Kmax - Kmin)"

SParis' equation has been an effective regression equation for crack

propagation rate in unreinforced flat specimens under constant amplitude

loading. However, it is not successful in pooling such data for more than

one value of stress ratio R, (ormin /o.r).

1.2 Forman's Equation

In an effort to extend Paris' equation to cover various stress ratios,

and to take into account the instability of the crack growth when the stress

intensity factor approaches its critical value for a given material, Forman,

et al,modified Paris' equation as follows:

c (A K)

da/dN (48) K-Adad (IR)K - AK (8
c

where:

C1 and nf material constants

K critical stress intensity faccorc

Because ot crack-tip blunting which is produced by cyclic strains in

the material ahead ot the advancing crack, it is important to select the

appropriate K value. The choice ot a K value larger than the tracturec c
toughness of the material normally will give a better result in establis'ing

K versus da/dN relationships. It the available data includes more than

one R-ratio, K should Le used as a curve fitting paranmster to force the

best fit ior itl 4v.%ilabIv d4ata.

0%1



1.3 Walket' s Equation

Roberts and Erdogan [56] proposed that %tress ratio effects in the power

law region of the crack growth raLe curve could be described using

da/dN n c (K . AK 2 (49)
max

"Walker ([I1 reformulated the equation so that the stress ratio would be

explicit and it had the form

da/dN = c K (I - R)] (50)

where c, m and p are material constants.

1.4 Determination of Constants in Paris' and Forman's Equations

Taking logarithms of both sides of Paris' and Forman's equations and re-

arranging terms, they become, respectively,

log (da/dP4) log c + n log (6K) (51)
p p

and

log 4i[(l X ) K c AK da/dNK log c~ n n log (AK) (52)

For any two given coordinate points, say dK,, da/dN. and 46K,+4 ,

'la/dN which represent a segment of the growth rate curve, one can solve
1it

the two siilltaneous equations for the uno'owns c and n.

2. SPEVThUM LOAD INTr.. .TION MODELS

The majority of crack growth studies have been carried out for constant

stress amplitude because of the simplicity in testing and because the data

can be presented in a straightforward manner. In actual practice, ettgineer-

Ing cm)onents are subjected to loads which are often irregular and vary in

a random t---ner. Fltlcttaat int loads due to atmospheric tt-irlence on aircraft

are typical examples of ratdom loadings. The differetnce between the cotven-

ticisial tatigtie experitents and the setual loading ot the components has led to

the develouptent at various crack 4anlsVis approaches. As discussed ir 4 pre-

vious section, nortttal crack growth rate •nider constant aapllitude loading

changes it the load p•pPlicatimts is preceded by a loading cycle of a differont

1S2I
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amplitude. The tensile overload causes permanent plastic deformation at the

crack tip which in turn delays the crack grewth at subsequent low load cycles,

while the compressive overload may accelerate the normal crack growth. The

importance of delay in the 'ate of fatigue crack. growth, as produced by ten-

sile overloads, on the accurate prediction of fatigue lives of structures has

been recognized, and quite a few investigations have been stimulated in this

area.

Several models have been suggested to account for the effects of delay

on the prediction of fatigue crack growth.. Those models use the plastic-

zone size (for either plane stress or plane strain) associated with the

applied load levels Lo characterize the load-interaction effect. These

modeis assume that if the size of the plastic zone, rp, developed due to

application of the current load cycle at crack length a extends to or past

the extremities of a previously developed load-interaction zone, ap, (i.e.,

(a + r p) a p), there will be no load interactinn and the growth rate asso-

ciated with the current load cycle is the same as the one generated under

constant-amplitude loading. Conversely, the crack-growth rate would be re-

duced (retarded) if r < (a - a). Some of the most often referenced

retardation models are described below.

2.1 Wheeler Model

The first retardation model proposed was that of Wheeler [52] who sug-

gested the use of a reduction factor on the constant amplitude crack growth

rate:

da (53)* c [ (AK) (3
dN p

where c is a retardation parameter defined as

pR
Pm

c----Z-c y for a - a >-- -- p - apy

c oI tr a - a 14
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.0 and m = shaping exponent

R extent of the current yield zone
y

- a - a the distance from crack tip to elastic-plastic interface

This model requires previous spectrum growth data to derive an empirical

"shaping exponent," m. Although it is a substantial improvement over the

linear cumulative damage rule, this model is more of a data fitting technique

than it is a predictive technique. Besides, the exponent in Wheeler's re-

tardation parameter is d.pendent not only upon the material, but also upon

- the manner in which spectrum loads were applied. For any design spectrum

"- different from the ones used to generate the test data, the exponent m

may be very different.

2.2 WillenborR Model

As mentioned earlier, the rate of propagation of a fatigue crack is

* controlled by the stress-intensity factor at the crack tip. Therefore, the

magnitude of the stress-intensity factor is a good indicator of the extent

of crack tip deformation. Since the cyclic crack tip deformation is reduced

doe to prior overloads, the model of Willenhorg et al (53], which uses an

a• "effective stress" concept to reduce the applied stress, and hence the crack

tip stress-intensity factor, seems more appealing. The model is described

as

.f )(AK)eft, (K mao] (54)

where

(AK) eff (K ) - (Km in)
* max MAX cei

Smax ff max ared

""ed "ap or tero whichever is larger

,-lI I •
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AF 2(a - a
ap= Fry c (55)Crap IT ' c

and

a cthe crack length at the beginning of the load cycle
ac after the overload

a - a = current plastic zone caused by the overload
p c

F = tensile yield strength of the material

OT = total geometric correction factor

"This model can be used to predict the fatigue crack growth under spec-

trum loading without the assistance of empirical facto'rs or data. Although the

model gives fairly ,,ood predictions for crack growth under moderate spectra,

. it tends not to give good correlations for spectrun loading with high over-

loads, especially overloads exceeding 150 percent ot the maximum of the low

load.

C 2.3 Generalized Willenborg Model

According to the Willenborg et al model, if the overload ratio,

KOL /V is greater than or equal to 2.0, a zero effective Etress-intensitv
Max max

Sfactor will be predicred and the crack will stop growing. However, experi-

merntal data contradicts such a prediction. Gallagher [54] modified the

WiltLenborg eqiation Cor effvect ve stress intensity factors as follows:

(K ) K (I1max eff Max Max r OL K
and (56)

(K ) -. 4 L• (- l •A) - •
wi n Win max r OL

or zero, whichever is larger.

is
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"The factor • is defined as

I (K ) /K"max maxS=-Th (57)

in which (Ka) is the maximum threshold stress intensity factor, and
max Th OL

Sso is the "overload shut-off ratio." When x/Kmax > SSO' crack arrest

occurs. Note that the original Willenborg model is recovered by setting

2.4 Hsu Model

The Hsu model [551 developed at the Lockheed-Georgia Company utilizes an

effective stress and closure concept. ft assames that the stress singularity

does not exist if the crack surface is closed and that the crack propagates only

during that portion of the load cycle in which the crack surface is fully

open. Let ao be the crack-opening stress, i.e., the corresponding far-

* field stress at the onset of crack opening. Then the effective stress range

of the load cycle during crack propagation can be defined as

&a eff = (Tmax - co (58)

When the opening stress is less than the minimum stress of the applied

load cycle, the effective stress range is given by

SAaeff = amax - U;min (59)

If the maximum stress of the applied load cycle is less than the crack

opening stress dut to prior loads, the crack surface will be fully closed.

0 Hence, the fatigue crack will not propagate.

However, experimental evidence indicated that belnw the closure K,

strain contcentration at the vicinity of the crack tip still exists. Since

, fattgue damage is normally related to the cyclic strain range, the effective

Kmin is likely ro "e somewhat lower than the level at the onsest of closure

and higher thatn K m under steady state (constant amplitude) conditions.

The effective stress range avnd the effective load rstio can then be re-
S

written as

""15b
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Acreff =amax - (onmin) (60)
eff

Reff = min) eff /Cmax (61)

respectively, where ormin < ((•min) <
eff -

For any given load cycle, the effective stress-intensity factor can

then be calculated from the equation

AKeff = AU eff .V fa . PT (62)

The crack growth rate associated with this applied load cycle is com-

puted from the growth rate equation

da
dN f (AK effR --- ) (63)

For a given loading spectrum, if one can determine the effective mini-

mum stress corresponding to each load cycle, the fatigue crack propagation

life can be predicted.

3. CRACK GROWTH ANALYSIS PROGRAM

A computer program has been developed using the state-of-the-art

methodologies including the stress intensity factors developed tinder

this program for the prediction of fatigue crack growth behaviors of single

through-the-thickness cracks and single corner cracks at attachment lugs

under cyclic loading. All the data presented in Sections III and IV, such as

stress analysis, fracture analysis, Green's function, Interference-fit

bushing analysis, etc., have been embedded in the computer program to make

it as automatic and simple as possible. This computer progr'Un contains the

three crack growth rate equations discussed above. There are five ditferent

options to input each individual mission load profile from which a mission

mix spectruit can be generated. The program predicts the crack growth using a

block-by-block integration technique. Crack growth may be analyzed with or

without toad-interaction using any of rhe mtodels described above.
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For through-the-thickness cracks, either the compounding solution or the

Green's function solution can be used in the prediction. In predicting the

growth behavior of a single corner crack, the crack may be analyzed by

either the one-parameter (i.e., constant a/c ratio) or two-parameter method.

For one-parameter analysis, the prediction is straightforward aud is

similar to through-the-thickness crack prediction. For two-parameter

analysis, it is assumed that for a given number of applied load cycles, the

S extension of the quarter elliptical crack border is controlled by the stress

intensity factors at the intersection of the crack periphery at the hole

wall and the lug surface, i.e., KA and KC, respectively. In general, the

stress intensity factors at these two locations are different, resulting in

different crack growth rates. Therefore, the new flaw shape aspect ratio after

each crack growth increment will be different from the preceding one. The new

crack aspect ratio is computed using the new crack lengths on both the hole wall

and lug surface. The process will be repeated until thecrack length along

* the hole wall is equal to the lug thickness. At that time the transitional

crack growth criteria as discussed in Section III are used until the crack

has achieved a uniform format. After that, if the failure has not occurred,

a one-dimensional through-the-thickness crack analysis is used to contin-

U uously predict the subsequent crack growth life. The analysis is considered

to be complete when fracture occurs or when the desired final crack length

or the maximum usage time is reached.

A detailed description of the computer program along with the input

instructions is provided in Reference[57].

0:
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SECTION VI

"SUMMARY OF RESULTS

Analytical methods have been presented to predict both fatigue crack

growth and residual strength of cracked attachment lugs. Each crack growth

analysis includes the following elements:

o Stress intensity factor solution

o Baseline crack growth rate relationship

o Applied load sequence

o Spectrum load interaction model.

Of these, the emphasis in this report has been upon the calculation

of stress intensity factors, covered in Sections III and IV. These sections

have been followed by a discussion in Section V of the alternative constant

amplitude fatigue crack growth rate relationships and spectrum load inter-

act ion models.

The following summary paragraphs are intended to provide an overview

and to tie together the content of this report and aid the reader in using

the analytical methods and results that have been presented.

I. SUMARY OF STRESS INTENSITY FACTORS FOR STRAIGHT LUGS (SECTION III)

Section III has covered the calculation of stress intensity factors

tor straight attachment lugs subjected to axial loading. Several alternative

methods have been discussed, including the simple compounding, two-dimensional

cracked finite element, weighting function, and three-dimensional cracked

4 finite element method. Parameters and complexities covered in Lhe stress

intensity factor solutions presented in this section are outer-to-inner radius

ratio (.SO to 3.0). crack geoittetry (single corner cracK, through-the-thick-

ne!s crack, and the intermediate transition), crack length (measured on lug
tace and along bore of hole), change itt distribution of pitn bearing pressure

dur- to crack length change, ratio of pin modulus to lug modulus (1.0 or 1.0),

interfet'ence-fit bushings, and elatstoplastie analysis when the peak stress

at the hole exceeds the material tensile yield strength.
q4



A two-dimensional finite element analysis has been used to compute the

*• stress distribution in the uncracked lug for lugs of various Ro/Ri ratios.

The major useful results of this analysis are the stress distribution along

the potential crack path (Table 3-I) and the stress concentration factor

(Figure 3-5).

The compounding method combines known solutions to obtain an engineer-

* ing approximation for the stress intensity factor, Equation (10). Stress

"intensity factor values calculated by this method have been listed in Table

3-2.

The two-dimensional cracked finite element method properly models the

crack tip stress singularity and the distribution of pin bearing pressure,

which changes drastically with crack length (Figures 3-14 through 3-16).

The stress intensity factor results from this method have been shown in

Figure 3-18 and listed in Table 3-3.

The weighting function method calculates the stress intensity factor

a.s the integral of the product of the stress in the uncracked lug times the

Groee's function for the lug; Equation (14). The Green's functions for

straight lugs, developed using two-dimensional cracked finite element analyses

with point loads applied on the crack surface, have been listed in Tables 3-4

through 1-6. However. these "original" Green's functions, when used with

the stress distribution in the uncracked lug from Table 3-1, obtain KI results

at variance with those of the two-dimensional cracked finite element analysis.

The discrepancy arises because the Green's function method fails to account

for the change in the distribution of pin bearing pressure. To correct the

discrepancy, the original Green's functions have been modified such that the

cracked finite element results ate exactly duplicated when these 'Imodified"

Green's functions (Tables 3-7 through 3-9) are used.

Figure A-29 compares the stress litensity factors for through-the-thick-

ness eracks computed by the various methods. Reasonable agreement among all

methods is obtained at R./Ri ratios of 2.11 and 3.0. but not at io/R iý 1.50.

Thus, any method could be used for larger I /1K ratios, but the more rigorous
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two-dimensional cracked finite element method (or equivalently, the Modified

Green's function method) is preferred for R /R. < 2.0.
0

The weighting function method can be applied to account for residual

stresses caused by a shrink-fit bushing. Assuming the lug and bushing remain

in intimate contact during loading, the stress intensity factor is calculated

by Equation (24) from the sum of the residual stress caused by bushing in-

stallation plus the distribution of stress caused by the applied load. The

residual stress is estimated from the closed-form solution for two concentric

cylinders, Equation (30). The applied stress is obtained from two-dimensional

finite element analysis of an uncracked lug in intimate contact with a neat-

fit bushing. If the bushing and lug are of the same material, then the applied

stress distribution can be obtained from Table 3-I. Sample applied stress dis-

tributions for various bushing/lug modulus ratios are shown in Figures 3-33

and 3-34. It is to he noted here that this method can give unconservative

results when separation occurs between the bushing and lug. In such instances,

an improvt.d methodology has been developed and is presented in Volume III of

thiUK report.

"-W solution methods for through-the-thickness cracks can be modified

to analyze a cornet crack, utilizing a corner crack correction factor, along

with a method to account for the transitional behavior as the corner crack

becomes a through-the-thickness crack. Two alternative correction factor

approaches have been suggested, a one-parameter and a two-parameter method.

In the one-parameter method the H law shape is assumed to be constant

(e.g., a/c 1. 13) and the strerss intensity factor at the lug surface point

(Point C) is calculat ed using Equat ions (31) and (32). These equations apply

to tht crack t hroughliout its growth irom a corner crack, through t ratnsition, to

a tctrUgh-t he--ti'kti-'• 'rack.

tn the two-palrametref method, Eqtparion% (11) througlh ('16) (in conjunct ion

with Figures 111, 1,76 and 178 of Re I.rernce [161) are used to vottpute stress

lurltetiritv !Yat,,rs at tchv Wu4 surface anid htole watl (Points C and A). Duritng

the trannition to a through-the-thirknes% cra4k. Equation. ('17) through (40)

161
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are used to compute stress intensity factors at the front and back surface.

A three-dimensional cracked finite element method, although too ex-

pensive for general application, has been used to check the accuracy of the

one and two-parameter corner crack solutions. Comparisons of stress intensity

factors are shown in Figures 3-46 through 3-50 and comparisons of corner crack

'" correction factors are shown in Figure 3-51.

An clastoplastic analysis has been described for use when the peak

stress in the uncracked lug exceeds the material tensile yield strength.

Using the stress-strain curves of Figure 3-52, an iterattve finite element

analysis with incremental loading and unloading is used to calculate the

stress distributions in the uncracked lug for the maximum and minimum loads

of the fatigue cycle. These stress distributions are used with the modified

Green's function to estimate Kmax and K min for a lug with a through-the-

thickness -:rack. Sample results for AK have been given in Figures 3-59 and

3-60 and Table 3-13. This nonlinear method is inexact and only an approxima-

tion, because strictly speaking the validity of the Green's function method

requires linearity between load and stress.

2. SUMMARY OF STRESS INTENSITY FACTORS FOR TAPERED LUGS (SECTION IV)

Section IV covers the calculation of stress intensity factors for ta-

pered attachment lugs subjected to either axial or off-axis loading. Only

* unbushed lugs with a 45-degree included taper angle are analyzed.

A two-dimensional finite element analysis has been used to calculate

the stress distribution in an uncracked lug. For axial loading, the peak

rangential stress is located at approximately 90 degrees to the lug axis

(Figure 4-5), and the stresses along the 90-degree line are listed in Table

4-1 for five values of R /R.. Equation (45) is atn equation for stress con-
0

rent rat ion factor for axial loading of a tapered lug with a taper angle be-

* tween 0 and 45 degrees. For off-axis as well as axial loading, the angular

locations of peak stresses are given in Figure 4-5.

Stress intensity factors for tapered lugs have been calculated by two-

,itmetsional cracked finite element analysis. Stress intensity factor results
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are listed in Table 4-2 for axial tension loading (and plotted in Figure 4-20

for axial compressive loading) of tapered lugs having R /R. ratios from 1.5
0 1

to 3.0. Off-axis loading solutions for stress intensity factors are plotted.

in Figures 4-22 and 4-23 for a tapered lug with R /R. 2.25, loaded in the
0 1

-45 and -90 degree directions, with a crack at either of the two most criti-

S-cal locations.

* For corner cracks in tapered lugs, the corner crack correction factors

presented in Section III can be used in conjunction with the appropriate

through-the-thickness stress intensity factors. For problems involving bush-

ings or stresses above the material yield strength, the weighting function

would be needed for tapered lugs for each new loading direction and crack

orientation. As an approximation, the Green's function for the axially-

lo.aded straight lug with the same R /R. ratio may be used although the ac-
0 1

ctiracy of this approximation is questionable, particularly for off-axis load-

ing.

3. SUMMARY OF FATI(GUE CRACK GROWTH ANALYSIS METHODS (SECTION V)

Crack growth analysis methodology has been briefly summarized in Sec-

tion V. Alternative constant amplitude fatigue crack growth rate equations

described include those of Paris [491. Forman [501, and Walker [51]. Alter-

nat ,ve spectrum load interaction models summarized are the Wheeler [52],

Willenborg [53], Generalized Willenborg [54] and llsu [55] models. The selec-

tion of a ratu equatrion and retardation model is left to the discretion of

the an.ilyst who is conduct ing the cra, k growth analysis.
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APPENDIX A

MODE I STRESS INTENSITY FORMULAS
RELATED TO CRACKED LUGS
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LINE CRACKS IN DOUBLY INFINITE PLATES

CASE 11 Uniform Tensil# Stress

S fT. Ki~ a 0

S. s Numerical Example: S 1, go 3: K11  3.06998

CASE 12. Central Spittn•g Forces on Crack Surfaces

S-- 12  where t * thick eass

-p Numerical Example: a 0 3, P * 1, t * 0.6: K I2  .54289

CASE 13. Arbttsrv Sotimng Forces on Crack Surfaces

p K13  K12t2

(2 )

0 l11 (2) K13 * K12I

- NOTE. x is fe•ative it tforceI applied
"p • closer to crack :Ip (1).

"Ig

(1) 121

Numerical Example: a 30 x , P a 1. a 0.6: K13 * 0.76771, K13  • 0.31381

1
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LINE CRACKS IN INFINITE-LENGTH STRIPS

CASE 21. Symmetric Crack, Uniform Tension

t t tra

b b
Numerical Example.

ao 0  3, b 8,S 1. K2 1  3.3668

CASE 22. Symmetric Crack. Central Spi ,ting Forcen on Crack Surfaces

K UKK22 12 21 \2b 22

u 2 2(Xol

I 30

Numerical Eample
ao 3.• 8.P 1. 0.6 K22 0.63125
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!J

"CRACKS AT HOLES IN DOUBLY-INFINITE PLATES

CASE 31. Single Crack. Tension Normal to Crack

. 't s t Ns/••, '•

U3 1 eXP(1.2133 - 2.205 P, 0.6451

Numerical Example:
S + + a 2, .r 1,S ,• K31  2.583

CASE 35. Single Crack. Distributed Splitting Forces at Hole

K35 = K13  131 (PI) U35 (Pl)

P. U35 (PI) _ xp [0.15 (P2 _1)3

x = a t12,ao x r + x

K,2r Limitation: Total load P results from uniform radial pressure from

2r i'/8 to 71/8 and .ir/8 to .70/. (K drops drastically it pressure is
applied between -yr/8 and If/8).

* 6.

* I
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CASE 26. Unsymmetric Crack, Uniform Tension (bn<. bf)

t f tb f I' A, _ S t (f)
At(fi): K 26 K11426 fX )

A (n)i K (n)
At~n): 26 = K 1 1C 26 (Xf, kn)

-- ao a---.a

n) b b (f) 1 + (knf) -I
( b h - b------* •26 11 si{8ar/t n f 0 j9

+~~~ 0.2 f(~9

4r j) (41 26~4 +r (.1 - u2)( +

b n . b

U26 sin I I

ao 0 4 3

Xx =- + i= 4b-2b"- n 2bn nt ='7 n ' f

CASE 27. Unsymmetric Crack, Central Splitting Forces on Crack Surfaces

K K (1) q (n) (X,, Xn) U22 (Xn)
S27 13 26

"ao-a -"•
r a~ K(2) (2) MI

2 K (1i ((f Xn)u22(Xnf)

(2)

x = b- n Combining ut Cases 12, 13, 21

-b b -- + : P. Stress 22 and 26.

U 1! (1_-v): P. Strain
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CRACKS AT CENTRAL HOLES IN INFINITE-LENGTH STRIPS

,* CASE 41. Single Crack, Uniform Tension

t s f (n)

Sal Combining of Cas 11, 21,
"bn 26 and 31

a I
aoa 0  o0  - r +-2

bl--b bf = b- a

2

IS

CASE 44. Single Crack, Distributed Splitting Forces at Hole

S--,--- -- 1
K 27 ( 3 1 Pl)Y1) 2 1(,Yu33 (PI)

a Limitation: Same load Combining of Cass 13. 21.Idistribution as 21.31 wvd 36
Cas 35

Dependent Variables:

* ba o a1/2. bn~b-x and ao = ri 112i~•-bn -- 4
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CORNER CRACKS, UNIFORM TENSION

CASE 71. Quarter-Circular Corner Crack Which Becomes Through Thickness

(C) =
K71  SvrrC U31( ) 7)

c (C) = 0.2886

B71 1 +2 lat)2

NOTE For cracks beginning as quarter circular corner cracks in
configurations 32 through 70.niultiply the

through-crack solution bv(V C7
S ~Limitations: 7

No plate bending

Numericai Example fC)

SectionB.B a c -2. r=1,t=3, S 1: K7 1  2.18834
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